A Primer on Mathematical Modeling in the Study of Organisms and Their Parts

  • Maël Montévil
Part of the Methods in Molecular Biology book series (MIMB, volume 1702)


Mathematical modeling is a very powerful tool for understanding natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter, we highlight the key ingredients and steps of modeling and focus on their biological interpretation. In particular, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.

Key words

Mathematical modeling Proliferation Theory Equations Parameters 


  1. 1.
    Beeman D (2013) Hodgkin-Huxley Model, Encyclopedia of computational neuroscience. Springer, New York, NY, pp 1–13. Google Scholar
  2. 2.
    Descartes R (2016) Discours de la méthode. Flammarion, ParisGoogle Scholar
  3. 3.
    Montévil M, Mossio M, Pocheville A, Longo G (2016) Theoretical principles for biology: variation. Prog Biophy Mol Biol 122(1):36–50. CrossRefGoogle Scholar
  4. 4.
    Mossio M, Montévil M, Longo G (2016) Theoretical principles for biology: organization. Prog Biophys Mol Biol 122(1):24–35. CrossRefPubMedGoogle Scholar
  5. 5.
    Noble D (2010) Biophysics and systems biology. Philos Trans R Soc A Math Phys Eng Sci 368(1914):1125. CrossRefGoogle Scholar
  6. 6.
    Sonnenschein C, Soto A (1999) The society of cells: cancer and control of cell proliferation. Springer Verlag, New YorkGoogle Scholar
  7. 7.
    Soto AM, Longo G, Montévil M, Sonnenschein C (2016) The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Progr Biophys Mol Biol 122(1):16–23. CrossRefGoogle Scholar
  8. 8.
    Montévil M, Speroni L, Sonnenschein C, Soto AM (2016b) Modeling mammary organogenesis from biological first principles: cells and their physical constraints. Prog Biophys Mol Biol 122(1):58–69. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    D’Anselmi F, Valerio M, Cucina A, Galli L, Proietti S, Dinicola S, Pasqualato A, Manetti C, Ricci G, Giuliani A, Bizzarri M (2011) Metabolism and cell shape in cancer: a fractal analysis. Int J Biochem Cell Biol 43(7):1052–1058. CrossRefPubMedGoogle Scholar
  10. 10.
    Longo G, Montévil M (2014) Perspectives on organisms: biological time, symmetries and singularities. Lecture notes in morphogenesis. Springer, Dordrecht. CrossRefGoogle Scholar
  11. 11.
    Tjørve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30(6):827–835. CrossRefGoogle Scholar
  12. 12.
    Hoehler TM, Jorgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11(2):83–94. CrossRefPubMedGoogle Scholar
  13. 13.
    Camalet S, Duke T, Julicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci U S A 97(7):3183–3188. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lesne A, Victor J-M (2006) Chromatin fiber functional organization: some plausible models. Eur Phys J E Soft Matter 19(3):279–290. CrossRefPubMedGoogle Scholar
  15. 15.
    Montévil M, Mossio M (2015) Biological organisation as closure of constraints. J Theor Biol 372:179–191. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Laboratoire “Matière et Systèmes Complexes” (MSC), UMR 7057 CNRS, Université Paris, 7 DiderotParis Cedex 13France
  2. 2.Institut d’Histoire et de Philosophie des Sciences et des Techniques (IHPST), UMR 8590ParisFrance

Personalised recommendations