High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins)

  • Heng Keat TamEmail author
  • Viveka Nand MalviyaEmail author
  • Klaas M. Pos
Part of the Methods in Molecular Biology book series (MIMB, volume 1700)


X-ray crystallography is still the most prominent technique in use to decipher the 3D structures of membrane proteins. For successful crystallization, sample quality is the most important parameter that should be addressed. In almost every case, highly pure, monodisperse, and stable protein sample is a prerequisite. Vapor diffusion is in general the method of choice for obtaining crystals. Here, we discuss a detailed protocol for overproduction and purification of the inner-membrane multidrug transporter AcrB and of DARPins, which are used for crystallization of the AcrB/DARPin complex, resulting in high-resolution diffraction and subsequent structure determination.

Key words

AcrB Resistance Nodulation cell Division Multidrug resistance Antibiotic resistance DARPin Protein crystallography 



Work in the Pos lab is supported by the German Research Foundation (SFB 807, Transport and Communication across Biological Membranes and FOR2251, Adaptation and persistence of the emerging pathogen Acinetobacter baumannii), the DFG-EXC115 (Cluster of Excellence Macromolecular Complexes at the Goethe-University Frankfurt), Innovative Medicines Initiative Joint Undertaking Project Translocation (IMI-Translocation), EU Marie Curie Actions ITN, Human Frontiers Science Program (HFSP) and the German-Israeli Foundation (GIF).


  1. 1.
    Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125PubMedGoogle Scholar
  2. 2.
    Saier MH, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213CrossRefPubMedGoogle Scholar
  3. 3.
    Yu EW, Aires JR, Nikaido H (2003) AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 185:5657–5664CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ma D, Cook DN, Hearst JE, Nikaido H (1994) Efflux pumps and drug resistance in Gram-negative bacteria. Trends Microbiol 2:489–493CrossRefPubMedGoogle Scholar
  5. 5.
    Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593CrossRefPubMedGoogle Scholar
  7. 7.
    Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298CrossRefPubMedGoogle Scholar
  8. 8.
    Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179CrossRefPubMedGoogle Scholar
  9. 9.
    Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5:106–113CrossRefGoogle Scholar
  10. 10.
    Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L, Verrey F, Diederichs K, Faraldo-Gómez JD, Pos KM (2014) Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. elife 3:e03145CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 53:697–706CrossRefPubMedGoogle Scholar
  12. 12.
    Tikhonova EB, Zgurskaya HI (2004) AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J Biol Chem 279:32116–32124CrossRefPubMedGoogle Scholar
  13. 13.
    Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793CrossRefPubMedGoogle Scholar
  14. 14.
    Yamaguchi A, Nakashima R, Sakurai K (2015) Structural basis of RND-type multidrug exporters. Front Microbiol 6:327CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2:842–846CrossRefPubMedGoogle Scholar
  16. 16.
    Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bukowska MA, Grütter MG (2013) New concepts and aids to facilitate crystallization. Curr Opin Struct Biol 23:409–416CrossRefPubMedGoogle Scholar
  18. 18.
    Eicher T, Cha H, Seeger MA, Brandstätter L, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, Pos KM (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109:5687–5692CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332:489–503CrossRefPubMedGoogle Scholar
  20. 20.
    Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  22. 22.
    Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582CrossRefPubMedGoogle Scholar
  23. 23.
    Sennhauser G, Grütter MG (2008) Chaperone-assisted crystallography with DARPins. Structure 16:1443–1453CrossRefPubMedGoogle Scholar
  24. 24.
    Brandstätter L, Sokolova L, Eicher T, Seeger MA, Briand C, Cha H, Cernescu M, Bohnert J, Kern WV, Brutschy B, Pos KM (2011) Analysis of AcrB and AcrB/DARPin ligand complexes by LILBID MS. Biochim Biophys Acta 1808:2189–2196CrossRefPubMedGoogle Scholar
  25. 25.
    Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF (2014) Structure of the AcrAB-TolC multidrug efflux pump. Nature 509:512–515CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of BiochemistryGoethe University FrankfurtFrankfurtGermany

Personalised recommendations