Advertisement

Phage Display pp 255-269 | Cite as

Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach

  • Zhihao Wu
  • Brian H. Santich
  • Hong Liu
  • Cheng Liu
  • Nai-Kong V. Cheung
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1701)

Abstract

Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T-cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T-cell biology, but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B-cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B-cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa), and to the multiple efficiency limiting steps inherent in these methods. In this chapter, we describe a phage display approach for the rapid generation of such antibodies with high specificity and affinity.

Key words

Phage display Phage Human leukocyte antigen Major histocompatibility complex Antibody Protein expression Fc-fusion protein Single-chain variable fragment scFv T-cell receptor Peptide MHC 

References

  1. 1.
    Smith GP (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://doi.org/10.1126/Science.4001944 CrossRefPubMedGoogle Scholar
  2. 2.
    Knappik A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides1. J Mol Biol 296:57–86. https://doi.org/10.1006/jmbi.1999.3444 CrossRefPubMedGoogle Scholar
  3. 3.
    Griffiths AD et al (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13:3245–3260PubMedPubMedCentralGoogle Scholar
  4. 4.
    Balint RF, Larrick JW (1993) Antibody engineering by parsimonious mutagenesis. Gene 137:109–118. https://doi.org/10.1016/0378-1119(93)90258-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–406CrossRefPubMedGoogle Scholar
  6. 6.
    Luzzago A, Felici F, Tramontano A, Pessi A, Cortese R (1993) Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene 128:51–57. https://doi.org/10.1016/0378-1119(93)90152-S CrossRefPubMedGoogle Scholar
  7. 7.
    McLafferty MA, Kent RB, Ladner RC, Markland W (1993) M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128:29–36. https://doi.org/10.1016/0378-1119(93)90149-W CrossRefPubMedGoogle Scholar
  8. 8.
    Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A 87:6378–6382CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554CrossRefPubMedGoogle Scholar
  10. 10.
    Hoogenboom HR et al (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137. https://doi.org/10.1093/nar/19.15.4133 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gram H et al (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89:3576–3580CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Orum H et al (1993) Efficient method for construction comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res 21:4491–4498. https://doi.org/10.1093/nar/21.19.4491 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoogenboom HR, Winter G (1992) By-passing immunisation. J Mol Biol 227:381–388. https://doi.org/10.1016/0022-2836(92)90894-P CrossRefPubMedGoogle Scholar
  14. 14.
    Barbas CF III (1995) Synthetic human antibodies. Nat Med 1:837–839CrossRefPubMedGoogle Scholar
  15. 15.
    Dao T et al (2013) Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 5:176ra133. https://doi.org/10.1126/scitranslmed.3005661 CrossRefGoogle Scholar
  16. 16.
    Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B, Hoogenboom HR (2000) Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci U S A 97:7969–7974CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu H et al (2016) Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T cell therapy for liver cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-16-1203
  18. 18.
    Barbas CF III, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schoonbroodt S et al (2008) Engineering Antibody Heavy Chain CDR3 to Create a Phage Display Fab Library Rich in Antibodies That Bind Charged Carbohydrates. J Immunol 181:6213–6221CrossRefPubMedGoogle Scholar
  20. 20.
    Rauchenberger R et al (2003) Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 278:38194–38205. https://doi.org/10.1074/jbc.M303164200 CrossRefPubMedGoogle Scholar
  21. 21.
    Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  22. 22.
    Liepe J et al (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354:354–358. https://doi.org/10.1126/science.aaf4384 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Zhihao Wu
    • 1
  • Brian H. Santich
    • 2
  • Hong Liu
    • 3
  • Cheng Liu
    • 3
  • Nai-Kong V. Cheung
    • 1
    • 2
  1. 1.Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Gerstner Sloan Kettering Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Eureka TherapeuticsEmeryvilleUSA

Personalised recommendations