Advertisement

Phage Display pp 205-238 | Cite as

Construction and Selection of Affilin® Phage Display Libraries

  • Florian Settele
  • Madlen Zwarg
  • Sebastian Fiedler
  • Daniel Koscheinz
  • Eva Bosse-DoeneckeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1701)

Abstract

Affilin® molecules represent a new class of so-called scaffold proteins. The concept of scaffold proteins is to use stable and versatile protein structures which can be endowed with de novo binding properties and specificities by introducing mutations in surface exposed amino acid residues. Complex variations and combinations are generated by genetic methods of randomization resulting in large cDNA libraries. The selection for candidates binding to a desired target can be executed by display methods, especially the very robust and flexible phage display. Here, we describe the construction of ubiquitin based Affilin® phage display libraries and their use in biopanning experiments for the identification of novel protein ligands.

Key words

Affilin® Library construction Phagemid TAT phage display Biopanning Selection Maturation 

Notes

Acknowledgment

We thank Anja Kunert for early work on the protocols, Ulrich Haupts for helpful discussions, and Erik Fiedler for chromatographic purification of the phage libraries.

References

  1. 1.
    Nord K, Nilsson J, Nilsson B, Uhlen M, Nygren PA (1995) A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng 8:601–608CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider S, Buchert M, Georgiev O, Catimel B, Halford M et al (1999) Mutagenesis and selection of PDZ domains that bind new protein targets. Nat Biotechnol 17:170–175CrossRefPubMedGoogle Scholar
  3. 3.
    Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C et al (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582CrossRefPubMedGoogle Scholar
  4. 4.
    LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187–193Google Scholar
  5. 5.
    Colas P, Cohen B, Jessen T, Grishina I, McCoy J et al (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550CrossRefPubMedGoogle Scholar
  6. 6.
    Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci U S A 96:1898–1903CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Abedi MR, Caponigro G, Kamb A (1998) Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res 26:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Holler PD, Holman PO, Shusta EV, O'Herrin S, Wittrup KD et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lorey S, Fiedler E, Kunert A, Nerkamp J, Lange C et al (2014) Novel ubiquitin-derived high affinity binding proteins with tumor targeting properties. J Biol Chem 289(12):8493–8507CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544CrossRefPubMedGoogle Scholar
  11. 11.
    Ibarra-Molero B, Loladze VV, Makhatadze GI, Sanchez-Ruiz JM (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry 38:8138–8149CrossRefPubMedGoogle Scholar
  12. 12.
    Khorasanizadeh S, Peters ID, Butt TR, Roder H (1993) Folding and stability of a tryptophan-containing mutant of ubiquitin. Biochemistry 32:7054–7063CrossRefPubMedGoogle Scholar
  13. 13.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  14. 14.
    Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767CrossRefPubMedGoogle Scholar
  15. 15.
    Paschke M, Höhne W (2005) A twin-arginine translocation (Tat)-mediated phage display system. Gene 350:79–88CrossRefPubMedGoogle Scholar
  16. 16.
    European Patent 1,626,985 B1Google Scholar
  17. 17.
    US Patent 8,791,238Google Scholar
  18. 18.
    Monjezi R, Tey BT, Sieo CC, Tan WS (2010) Purification of bacteriophage M13 by anion exchange chromatography. J Chromatogr B Anal Technol Biomed Life Sci 878:1855–1859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Florian Settele
    • 1
  • Madlen Zwarg
    • 1
  • Sebastian Fiedler
    • 1
  • Daniel Koscheinz
    • 1
  • Eva Bosse-Doenecke
    • 1
    Email author
  1. 1.Navigo Proteins GmbHHalle (Saale)Germany

Personalised recommendations