Absolute Quantitation of In Vitro Expressed Plant Membrane Proteins by Targeted Proteomics (MRM) for the Determination of Kinetic Parameters

  • Carsten Rautengarten
  • Berit Ebert
  • Joshua L. Heazlewood
Part of the Methods in Molecular Biology book series (MIMB, volume 1696)


The purification of a functional soluble protein from biological or in vitro expression systems can be problematic and the enrichment of a functional membrane protein for biochemical analyses can be a serious technical challenge. Recently we have been characterizing plant endomembrane nucleotide sugar transporters using a yeast expression system. However, rather than enriching these in vitro expressed proteins to homogeneity, we have been conducting biochemical characterization of these transport proteins in yeast microsomal fractions. While this approach has enabled us to estimate a variety of kinetic parameters, the accurate determination of the turnover number of an enzyme-substrate complex (kcat) requires that the catalytic site concentration (amount of protein) in the total reaction volume is known. As a result, we have been employing targeted proteomics (multiple reaction monitoring) with peptide standards and a triple quadrupole mass spectrometer to estimate the absolute amount of protein in a mixed protein microsomal fraction. The following method details the steps required to define the absolute quantitation of an in vitro expressed membrane protein to define complete kinetic parameters.

Key words

Membrane proteins Multiple reaction monitoring Enzyme kinetics 



This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. J.L.H. and B.E. are supported by ARC Future Fellowships [FT130101165 and FT160100276].


  1. 1.
    Michaelis L, Menten ML (1913) The kenetics of the inversion effect. Biochem Z 49:333–369Google Scholar
  2. 2.
    Henri V (1903) Lois générales de l’action des diastases. Hermann, ParisGoogle Scholar
  3. 3.
    Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50:8264–8269. doi: 10.1021/bi201284u CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Matern U, Grisebach H (1977) UDP-apiose-UDP-xylose synthase – subunit composition and binding studies. Eur J Biochem 74:303–312. doi: 10.1111/j.1432-1033.1977.tb11394.x CrossRefPubMedGoogle Scholar
  6. 6.
    Rautengarten C, Ebert B, Ouellet M et al (2012) Arabidopsis deficient in cutin ferulate encodes a transferase required for feruloylation of omega-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665. doi: 10.1104/pp.111.187187 CrossRefPubMedGoogle Scholar
  7. 7.
    Lim L, Linka M, Mullin KA et al (2010) The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett 584:549–554. doi: 10.1016/j.febslet.2009.11.097 CrossRefPubMedGoogle Scholar
  8. 8.
    Ebert B, Rautengarten C, Guo X et al (2015) Identification and characterization of a Golgi localized UDP-xylose transporter family from Arabidopsis. Plant Cell 27:1218–1227. doi: 10.1105/tpc.114.133827 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rautengarten C, Ebert B, Moreno I et al (2014) The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci U S A 111:11563–11568. doi: 10.1073/pnas.1406073111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ito J, Herter T, Baidoo EE et al (2014) Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Anal Biochem 448:14–22. doi: 10.1016/j.ab.2013.11.026 CrossRefPubMedGoogle Scholar
  11. 11.
    Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513. doi: 10.1016/j.cell.2005.04.020 CrossRefPubMedGoogle Scholar
  12. 12.
    Arkin AP (2013) A wise consistency: engineering biology for conformity, reliability, predictability. Curr Opin Chem Biol 17:893–901. doi: 10.1016/j.cbpa.2013.09.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Taylor NL, Fenske R, Castleden I et al (2014) Selected reaction monitoring to determine protein abundance in Arabidopsis using the Arabidopsis proteotypic predictor. Plant Physiol 164:525–536. doi: 10.1104/pp.113.225524 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Carsten Rautengarten
    • 1
  • Berit Ebert
    • 1
    • 2
  • Joshua L. Heazlewood
    • 1
    • 2
  1. 1.School of BioSciencesThe University of MelbourneParkvilleAustralia
  2. 2.Joint BioEnergy InstituteLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations