Glaucoma pp 187-205 | Cite as

In Vitro and In Vivo Methods for Studying Retinal Ganglion Cell Survival and Optic Nerve Regeneration

  • Yuqin YinEmail author
  • Larry I. Benowitz
Part of the Methods in Molecular Biology book series (MIMB, volume 1695)


Glaucoma is marked by a progressive degeneration of the optic nerve and delayed loss of retinal ganglion cells (RGCs), the projection neurons of the eye. Because RGCs are not replaced and because surviving RGCs cannot regenerate their axons, the visual loss in glaucoma is largely irreversible. Here, we describe methods to evaluate treatments that may be beneficial for treating glaucoma using in vitro cell culture models (immunopanning to isolate neonatal RGCs, dissociated mature retinal neurons, retinal explants) and in vivo models that test potential treatments or investigate underlying molecular mechanisms in an intact system. Potentially, use of these models can help investigators continue to improve treatments to preserve RGCs and restore visual function in patients with glaucoma.

Key words

Retina Retinal ganglion cells Optic nerve Glaucoma Cell culture Explants Trophic factors Axon regeneration Cell signaling mechanisms Quantitative methods 


  1. 1.
    Ramon Y, Cajal S (1991) Degeneration and regeneration in of the nervous system (trans: May RM). Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Bray GM, Vidal-Sanz M, Aguayo AJ (1987) Regeneration of axons from the central nervous system of adult rats. Prog Brain Res 71:373–379CrossRefPubMedGoogle Scholar
  3. 3.
    Lye-Barthel M, Sun D, Jakobs TC (2013) Morphology of astrocytes in a glaucomatous optic nerve. Invest Ophthalmol Vis Sci 54(2):909–917. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Matsumoto H, Murakami Y, Kataoka K, Notomi S, Mantopoulos D, Trichonas G, Miller JW, Gregory MS, Ksander BR, Marshak-Rothstein A, Vavvas DG (2015) Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium. Cell Death Dis 6:e1986. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7(7):e40065. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1(9):791–803CrossRefPubMedGoogle Scholar
  7. 7.
    Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C, Li Z, Zaverucha-do-Valle C, He H, Petkova V, Zack DJ, Benowitz LI (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A 106(46):19587–19592. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9(6):843–852. CrossRefPubMedGoogle Scholar
  9. 9.
    Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51CrossRefPubMedGoogle Scholar
  10. 10.
    Wang SW, Mu X, Bowers WJ, Klein WH (2002) Retinal ganglion cell differentiation in cultured mouse retinal explants. Methods 28(4):448–456CrossRefPubMedGoogle Scholar
  11. 11.
    Manabe S, Kashii S, Honda Y, Yamamoto R, Katsuki H, Akaike A (2002) Quantification of axotomized ganglion cell death by explant culture of the rat retina. Neurosci Lett 334(1):33–36CrossRefPubMedGoogle Scholar
  12. 12.
    Lagreze WA, Pielen A, Steingart R, Schlunck G, Hofmann HD, Gozes I, Kirsch M (2005) The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 46(3):933–938. CrossRefPubMedGoogle Scholar
  13. 13.
    Toops KA, Berlinicke C, Zack DJ, Nickells RW (2012) Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity. Invest Ophthalmol Vis Sci 53(4):2046–2061. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419–433. CrossRefPubMedGoogle Scholar
  15. 15.
    Bull ND, Johnson TV, Welsapar G, DeKorver NW, Tomarev SI, Martin KR (2011) Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest Ophthalmol Vis Sci 52(6):3309–3320. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328(2):349–354CrossRefPubMedGoogle Scholar
  17. 17.
    Berry M, Carlile J, Hunter A (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol 25(2):147–170CrossRefPubMedGoogle Scholar
  18. 18.
    Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20(12):4615–4626PubMedGoogle Scholar
  19. 19.
    Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91CrossRefPubMedGoogle Scholar
  20. 20.
    Skene JH (1989) Axonal growth-associated proteins. Annu Rev Neurosci 12:127–156. CrossRefPubMedGoogle Scholar
  21. 21.
    Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kugler S, Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30(46):15654–15663. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, Gilbert HY, Fagiolini M, Martinez AM, Benowitz L (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109(23):9149–9154. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo X, Yungher B, Park KK (2014) Application of tissue clearing and light sheet fluorescence microscopy to assess optic nerve regeneration in unsectioned tissues. Methods Mol Biol 1162:209–217. CrossRefPubMedGoogle Scholar
  25. 25.
    Potts RA, Dreher B, Bennett MR (1982) The loss of ganglion cells in the developing retina of the rat. Brain Res 255(3):481–486CrossRefPubMedGoogle Scholar
  26. 26.
    Selles-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167(2):282–289. CrossRefPubMedGoogle Scholar
  27. 27.
    Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293PubMedGoogle Scholar
  28. 28.
    Park K, Luo JM, Hisheh S, Harvey AR, Cui Q (2004) Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J Neurosci 24(48):10806–10815. CrossRefPubMedGoogle Scholar
  29. 29.
    Cui Q, Yip HK, Zhao RC, So KF, Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 22(1):49–61CrossRefPubMedGoogle Scholar
  30. 30.
    Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50(8):3860–3868. CrossRefPubMedGoogle Scholar
  31. 31.
    Yukita M, Machida S, Nishiguchi KM, Tsuda S, Yokoyama Y, Yasuda M, Maruyama K, Nakazawa T (2015) Molecular, anatomical and functional changes in the retinal ganglion cells after optic nerve crush in mice. Doc Ophthalmol 130(2):149–156. CrossRefPubMedGoogle Scholar
  32. 32.
    Rodriguez AR, de Sevilla Muller LP, Brecha NC (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522(6):1411–1443. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Benowitz LI, Apostolides PJ, Perrone-Bizzozero N, Finklestein SP, Zwiers H (1988) Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci 8(1):339–352PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Neurosurgery, F.M. Kirby Neurobiology CenterBoston Children’s HospitalBostonUSA
  2. 2.Department of NeurosurgeryHarvard Medical SchoolBostonUSA
  3. 3.Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations