Introduction to Cancer Stem Cells: Past, Present, and Future

  • David Bakhshinyan
  • Ashley A. Adile
  • Maleeha A. Qazi
  • Mohini Singh
  • Michelle M. Kameda-Smith
  • Nick Yelle
  • Chirayu Chokshi
  • Chitra Venugopal
  • Sheila K. SinghEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1692)


The Cancer Stem Cell (CSC) hypothesis postulates the existence of a small population of cancer cells with intrinsic properties allowing for resistance to conventional radiochemotherapy regiments and increased metastatic potential. Clinically, the aggressive nature of CSCs has been shown to correlate with increased tumor recurrence, metastatic spread, and overall poor patient outcome across multiple cancer subtypes. Traditionally, isolation of CSCs has been achieved through utilization of cell surface markers, while the functional differences between CSCs and remaining tumor cells have been described through proliferation, differentiation, and limiting dilution assays. The generated insights into CSC biology have further highlighted the importance of studying intratumoral heterogeneity through advanced functional assays, including CRISPR-Cas9 screens in the search of novel targeted therapies. In this chapter, we review the discovery and characterization of cancer stem cells populations within several major cancer subtypes, recent developments of novel assays used in studying therapy resistant tumor cells, as well as recent developments in therapies targeted at cancer stem cells.

Key words

Cancer stem cells Lung cancer Colon cancer Leukemia Breast cancer Brain cancer CRISPR Immunotherapy 


  1. 1.
    Ramalho-Santos M, Willenbring H (2007) On the origin of the term “stem cell”. Cell Stem Cell 1(1):35–38PubMedCrossRefGoogle Scholar
  2. 2.
    Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222PubMedCrossRefGoogle Scholar
  3. 3.
    Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336CrossRefGoogle Scholar
  4. 4.
    McCulloch EA, Till JE, Siminovitch L (1965) The role of independent and dependent stem cells in the control of hemopoietic and immunologic responses. Wistar Inst Symp Monogr 4:61–68PubMedGoogle Scholar
  5. 5.
    Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020PubMedGoogle Scholar
  6. 6.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedCrossRefGoogle Scholar
  8. 8.
    Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F et al (2011) Evidence for human lung stem cells. N Engl J Med 364(19):1795–1806PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cohnheim J (1875) Congenitales, quergestreiftes muskelsarkon der nireren. Virchows Arch:65–64Google Scholar
  10. 10.
    Rippert H. Geschwulstelehre fur Aerzte und Studierende. 1904Google Scholar
  11. 11.
    Virchow R. 1863. Dir Krankhoften Geschwulste. Vol II. Onkologie, Pt 1Google Scholar
  12. 12.
    Paget J (1853) Lectures on surgical pathology. Lindsay & Blakiston, PhiladelphiaGoogle Scholar
  13. 13.
    Pierce GB, Dixon FJ Jr (1959) Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12(3):573–583PubMedCrossRefGoogle Scholar
  14. 14.
    Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72(9):3585–3589PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Illmensee K (1978) Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. Basic Life Sci 12:3–25PubMedGoogle Scholar
  16. 16.
    Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol 21(3):364–382PubMedCrossRefGoogle Scholar
  17. 17.
    Stevens LC (1964) Experimental production of testicular teratomas in mice. Proc Natl Acad Sci U S A 52:654–661PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9(12):3126–3136PubMedCrossRefGoogle Scholar
  19. 19.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143PubMedGoogle Scholar
  20. 20.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRefGoogle Scholar
  21. 21.
    Serrano D, Bleau AM, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C et al (2011) Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer 10:96PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu J, Xiao Z, Wong SK, Tin VP, Ho KY, Wang J et al (2013) Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4(10):1698–1711PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648PubMedCrossRefGoogle Scholar
  24. 24.
    Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501PubMedCrossRefGoogle Scholar
  25. 25.
    Warner JK, Wang JC, Hope KJ, Jin L, Dick JE (2004) Concepts of human leukemic development. Oncogene 23(43):7164–7177PubMedCrossRefGoogle Scholar
  26. 26.
    Early Breast Cancer Trialists’ Collaborative G (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717CrossRefGoogle Scholar
  27. 27.
    Hartwig FP, Nedel F, Collares T, Tarquinio SB, Nor JE, Demarco FF (2014) Oncogenic somatic events in tissue-specific stem cells: a role in cancer recurrence? Ageing Res Rev 13:100–106PubMedCrossRefGoogle Scholar
  28. 28.
    Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG et al (2013) Invasive cancers are not necessarily from preformed in situ tumours - an alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 17(7):921–926PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mintz B, Cronmiller C, Custer RP (1978) Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci U S A 75(6):2834–2838PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRefGoogle Scholar
  31. 31.
    Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Perrone G, Gaeta LM, Zagami M, Nasorri F, Coppola R, Borzomati D et al (2012) In situ identification of CD44+/CD24- cancer cells in primary human breast carcinomas. PLoS One 7(9):e43110PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang LB, He YQ, Wu LG, Chen DM, Fan H, Jia W (2012) Isolation and characterization of human breast tumor stem cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 28(12):1261–1264PubMedGoogle Scholar
  34. 34.
    Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66(2):149–156PubMedCrossRefGoogle Scholar
  35. 35.
    Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66(21):10233–10237PubMedCrossRefGoogle Scholar
  36. 36.
    Schabath H, Runz S, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325PubMedCrossRefGoogle Scholar
  37. 37.
    Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ et al (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C et al (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122(2):298–304PubMedCrossRefGoogle Scholar
  40. 40.
    Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68(19):7711–7717PubMedCrossRefGoogle Scholar
  41. 41.
    Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108(3):378–387PubMedCrossRefGoogle Scholar
  42. 42.
    Karamboulas C, Ailles L (2013) Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta 1830(2):2481–2495PubMedCrossRefGoogle Scholar
  43. 43.
    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106(33):13820–13825PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15(2):253–260PubMedCrossRefGoogle Scholar
  46. 46.
    Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M et al (2013) TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123(3):1348–1358PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRefGoogle Scholar
  49. 49.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRefGoogle Scholar
  50. 50.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206PubMedCrossRefGoogle Scholar
  52. 52.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  53. 53.
    Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452PubMedCrossRefGoogle Scholar
  54. 54.
    Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL et al (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22(6):765–780PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS et al (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23(2):238–248PubMedCrossRefGoogle Scholar
  58. 58.
    Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL et al (2010) The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126(5):1155–1165PubMedPubMedCentralGoogle Scholar
  59. 59.
    Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N et al (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6(11):e26740PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRefGoogle Scholar
  61. 61.
    Beier D, Schriefer B, Brawanski K, Hau P, Weis J, Schulz JB et al (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neuro-Oncol 109(1):45–52CrossRefGoogle Scholar
  62. 62.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedCrossRefGoogle Scholar
  63. 63.
    Collins LG, Haines C, Perkel R, Enck RE (2007) Lung cancer: diagnosis and management. Am Fam Physician 75(1):56–63PubMedGoogle Scholar
  64. 64.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833PubMedCrossRefGoogle Scholar
  65. 65.
    Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L (2010) Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 102(11):1636–1644PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3(8):e3077PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7(3):330–338PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD et al (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5(11):e14062PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3(7):e2637PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514PubMedCrossRefGoogle Scholar
  71. 71.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106(38):16281–16286PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D et al (2012) Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 7(8):e42564PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kijima N, Hosen N, Kagawa N, Hashimoto N, Nakano A, Fujimoto Y et al (2012) CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro-Oncology 14(10):1254–1264PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S et al (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272PubMedCrossRefGoogle Scholar
  75. 75.
    Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L et al (2013) Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8(3):e57020PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326PubMedCrossRefGoogle Scholar
  77. 77.
    Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M et al (2015) The Global Burden of Cancer 2013. JAMA Oncol 1(4):505–527CrossRefGoogle Scholar
  78. 78.
    Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113PubMedCrossRefGoogle Scholar
  79. 79.
    Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116PubMedCrossRefGoogle Scholar
  82. 82.
    Song L, Li Y, He B, Gong Y (2015) Development of small molecules targeting the Wnt signaling pathway in cancer stem cells for the treatment of colorectal cancer. Clin Colorectal Cancer 14(3):133–145PubMedCrossRefGoogle Scholar
  83. 83.
    Vermeulen L, Todaro M, de Sousa MF, Sprick MR, Kemper K, Perez Alea M et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 105(36):13427–13432PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007PubMedCrossRefGoogle Scholar
  85. 85.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402PubMedCrossRefGoogle Scholar
  86. 86.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110PubMedCrossRefGoogle Scholar
  88. 88.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115PubMedCrossRefGoogle Scholar
  89. 89.
    Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRefGoogle Scholar
  90. 90.
    Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729PubMedCrossRefGoogle Scholar
  91. 91.
    Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345PubMedCrossRefGoogle Scholar
  92. 92.
    Swanton C (2015) Cancer evolution constrained by mutation order. N Engl J Med 372(7):661–663PubMedCrossRefGoogle Scholar
  93. 93.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE (2004) Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103(2):545–552PubMedCrossRefGoogle Scholar
  95. 95.
    Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ et al (2010) Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115(13):2610–2618PubMedCrossRefGoogle Scholar
  96. 96.
    Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77–88PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548PubMedCrossRefGoogle Scholar
  98. 98.
    Nolan-Stevaux O, Tedesco D, Ragan S, Makhanov M, Chenchik A, Ruefli-Brasse A et al (2013) Measurement of cancer cell growth heterogeneity through lentiviral barcoding identifies clonal dominance as a characteristic of in vivo tumor engraftment. PLoS One 8(6):e67316PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nguyen LV, Cox CL, Eirew P, Knapp DJ, Pellacani D, Kannan N et al (2014) DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat Commun 5:5871PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764PubMedCrossRefGoogle Scholar
  102. 102.
    Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763PubMedCrossRefGoogle Scholar
  103. 103.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512PubMedCrossRefGoogle Scholar
  104. 104.
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182PubMedCrossRefGoogle Scholar
  105. 105.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561PubMedGoogle Scholar
  106. 106.
    Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L et al (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350(6262):823–826PubMedCrossRefGoogle Scholar
  107. 107.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87PubMedCrossRefGoogle Scholar
  108. 108.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84PubMedCrossRefGoogle Scholar
  109. 109.
    Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526PubMedCrossRefGoogle Scholar
  110. 110.
    Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Stern M, Herrmann R (2005) Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 54(1):11–29PubMedCrossRefGoogle Scholar
  112. 112.
    Vennepureddy A, Singh P, Rastogi R, Atallah JP, Terjanian T (2016) Evolution of ramucirumab in the treatment of cancer - A review of literature. J Oncol Pharm PractGoogle Scholar
  113. 113.
    Chames P, Baty D (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 1(6):539–547PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Muller D, Kontermann RE (2010) Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 24(2):89–98PubMedCrossRefGoogle Scholar
  115. 115.
    Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA (2005) BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today 10(18):1237–1244PubMedCrossRefGoogle Scholar
  116. 116.
    Wong R, Pepper C, Brennan P, Nagorsen D, Man S, Fegan C (2013) Blinatumomab induces autologous T-cell killing of chronic lymphocytic leukemia cells. Haematologica 98(12):1930–1938PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD et al (2015) Are BiTEs the “missing link” in cancer therapy? Oncoimmunology 4(6):e1008339PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20(4):972–984PubMedCrossRefGoogle Scholar
  121. 121.
    Reichert JM (2010) Antibodies to watch in 2010. MAbs 2(1):84–100PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11(1):22–30PubMedGoogle Scholar
  124. 124.
    Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • David Bakhshinyan
    • 1
    • 2
  • Ashley A. Adile
    • 1
    • 2
  • Maleeha A. Qazi
    • 1
    • 2
  • Mohini Singh
    • 1
    • 2
  • Michelle M. Kameda-Smith
    • 1
    • 2
  • Nick Yelle
    • 1
    • 2
  • Chirayu Chokshi
    • 1
    • 2
  • Chitra Venugopal
    • 1
    • 3
  • Sheila K. Singh
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.McMaster Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonCanada
  2. 2.Department of Biochemistry and Biomedical Science, Faculty of Health SciencesMcMaster UniversityHamiltonCanada
  3. 3.Department of Surgery, Faculty of Health SciencesMcMaster UniversityHamiltonCanada
  4. 4.Michael DeGroote Centre for Learning and Discovery, Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations