Polyamines pp 489-508 | Cite as

Potential Applications of Polyamines in Agriculture and Plant Biotechnology

  • Antonio F. TiburcioEmail author
  • Rubén Alcázar
Part of the Methods in Molecular Biology book series (MIMB, volume 1694)


The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

Key words

Putrescine Spermidine Spermine Polyamines Plant growth and development Seed germination Vegetative and reproductive development Senescence Agriculture Biotechnology 



A.F.T. acknowledges funding support from Spanish Ministerio de Ciencia e Innovación (BIO2011-29683). R.A. acknowledges further funding support from the Ramón y Cajal Program (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain), the BFU2013-41337-P grant of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (Ministerio de Economía y Competitividad, Spain) and a Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the European Union. R.A. and A.F.T. are members of the Group de Recerca Consolidat 2014 SGR-920 of the Generalitat de Catalunya.


  1. 1.
    Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18PubMedCrossRefGoogle Scholar
  2. 2.
    Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  3. 3.
    Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 7:870PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51PubMedCrossRefGoogle Scholar
  5. 5.
    Walters D, Meurer-Grimes B, Rovira I (2001) Antifungal activity of three spermidine conjugates. FEMS Microbiol Lett 201:255–258PubMedCrossRefGoogle Scholar
  6. 6.
    Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J (2007) Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol 144:1531–1545PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46PubMedCrossRefGoogle Scholar
  8. 8.
    Farooq M, Basra SMA, Rehman H, Hussain M (2008) Seed priming with polyamines improves the germination and early seedling growth in fine rice. J New Seeds 9:145–155CrossRefGoogle Scholar
  9. 9.
    Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340PubMedCrossRefGoogle Scholar
  10. 10.
    Cao DD, Hu J, Gao CH, Guan YJ, Zang S, Xiao JF (2008) Chilling tolerance of maize can be improved by seed soaking in putrescine. Seed Sci Technol 36:191–197CrossRefGoogle Scholar
  11. 11.
    Yang L, Hong XU, Xiao-xia W, Yun-cheng L (2016) Effect of polyamines on wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:60345–60347Google Scholar
  12. 12.
    Ali RM, Abbas HM, Kamal RK (2009) The effects of treatment with polyamines on dry matter and some metabolites in salinity-stressed chamomile and sweet majoram seedlings. Plant Soil Environ 55:477–483CrossRefGoogle Scholar
  13. 13.
    Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19:18003–18024PubMedCrossRefGoogle Scholar
  14. 14.
    Rebecca LJ, Das S, Dhanalakshmi V, Anbuselvi S (2010) Effect of exogenous spermidine on salinity tolerance with respect to seed germination. Int J Appl Agric Res 5:163–169Google Scholar
  15. 15.
    Sedagahat S, Rahemi M (2011) Effect of pre-soaking seeds in polyamines on seed germination and seedling growth of Pistacia vera L. cv. Ghazvini. Int J f Nuts Relat Sci 2:7–14Google Scholar
  16. 16.
    Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J (2017) Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol 17:1PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chunthaburee S, Sanichon J, Pattanagul W, Theerakulpisut (2014) Alleviation of salt stress in seedlings of Black glutinous rice by seed priming with spermidine and gibberelic acid. Not Bot Horti Agrobot 42:405–413Google Scholar
  18. 18.
    Iqbal M, Ashraf M, Rehman S-U, Rha ES (2006) Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat plants under salt stress? Bot Stud 47:239–250Google Scholar
  19. 19.
    Ferrando A, Carrasco P, Tiburcio AF (2009) Modulation of seed growth and development by inhibition of polyamine catabolism. Patent WO2009074700Google Scholar
  20. 20.
    Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond Ser B Biol Sci 367:1441–1452CrossRefGoogle Scholar
  21. 21.
    Couée I, Hummel I, Sulmon C, Gouesbert G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10CrossRefGoogle Scholar
  22. 22.
    Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96:6529–6534PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148CrossRefGoogle Scholar
  26. 26.
    Flores HE, Galston AW (1982) Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261PubMedCrossRefGoogle Scholar
  27. 27.
    Biondi S, Mengoli M, Mott D, Bagni N (1993) Hairy root cultures of Hyosciamus muticus-effect of polyamine biosynthesis inhibitors. Plant Physiol Biochem 31:51–58Google Scholar
  28. 28.
    Martin-Tanguy J, Carré M (1993) Polyamines in grapevine microcuttings cultivated in vitro-effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280CrossRefGoogle Scholar
  29. 29.
    Tiburcio AF, Amin Gendy C, Tran Than Van K (1989) Morphogenesis in tobacco subepidermal cells: putrescine as a marker of root differentiation. Plant Cell Tissue Organ Cult 19:43–54CrossRefGoogle Scholar
  30. 30.
    Cui X, Ge C, Wang R, Wang H, Chen W, Fu Z, Jiang X, Li J, Wang Y (2010) The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Res 20:576–586PubMedCrossRefGoogle Scholar
  31. 31.
    Wu Q-S, Zou Y-N, Liu C-Y, Cheng K (2012) Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange seedlings. Not Bot Horti Agrobot 40:80–85CrossRefGoogle Scholar
  32. 32.
    Tang W, Newton RJ (2005) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep 24:581–589PubMedCrossRefGoogle Scholar
  33. 33.
    Wu Q-S, Zou Y-N, Liu C-Y, Lu T (2010) Interacted effect of arbuscular mycorrizal fungi and polyamines on root system architecture of citrus seedlings. J Integr Biol 11:1675–1681Google Scholar
  34. 34.
    Tomar PC, Lakra N, Mishra SN (2013) Cadaverine: a lysine catabolite involved in plant growth and development. Plant Signal Behav 8(10)Google Scholar
  35. 35.
    Gamarnik A, Frydman RB (1991) Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol 97:778–785PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Strohm AK, Vaughn LM, Masson PH (2015) Natural variation in the expression of ORGANIC CATION TRANSPORTER1 affects root length responses to cadaverine in Arabidopsis. J Exp Bot 66:853–862PubMedCrossRefGoogle Scholar
  37. 37.
    Liu T, Dobashi H, Kim DW, Sagor GH, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants 20:151–159PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sagor GH, Berberich T, Kojima S, Niitsu M, Kusano T (2016) Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Rep 35:1247–1257PubMedCrossRefGoogle Scholar
  39. 39.
    Salabert A (1995) Obtaining and use of diamines, polyamines and other complementary active elements from treated natural products. Patent EP0726240A1Google Scholar
  40. 40.
    Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  42. 42.
    Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci U S A 96:290–295PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456PubMedCrossRefGoogle Scholar
  44. 44.
    Geuns JM, Smets R, Struyf T, Prinsen E, Valcke R, Van Onckelen H (2001) Apical dominance in Pssu-ipt-transformed tobacco. Phytochemistry 58:911–921PubMedCrossRefGoogle Scholar
  45. 45.
    Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166CrossRefGoogle Scholar
  46. 46.
    Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451PubMedCrossRefGoogle Scholar
  47. 47.
    Tran Thanh Van M (1973) Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta 115:87–92CrossRefGoogle Scholar
  48. 48.
    Kaur-Sawhney R, Tiburcio AF, Galston AW (1988) Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173:282–284PubMedCrossRefGoogle Scholar
  49. 49.
    Purohit SD, Singhvi A, Nagori R, Vyas S (2007) Polyamines stimulate shoot bud proliferation in Achras sapota grown in culture. Indian J Biotechnol 6:85–90Google Scholar
  50. 50.
    Ganesan M, Jayabalan N (2006) Influence of cytokinins, auxins and polyamines on in vitro mass multiplication of cotton (Gossypium hirsutum L. cv. SVPR2). Indian J Exp Biol 44:506–513PubMedGoogle Scholar
  51. 51.
    Sivanandhan G, Mariashibu TS, Arun M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Eithania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288CrossRefGoogle Scholar
  52. 52.
    Bajaj S, Rajam MV (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol 112:1343–1348PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tiburcio AF, Figueras X, Claparols I, Santos M, Torné JM (1991) Improved plant regeneration in maize callus cultures after pretreatment with DL-alpha difluoro-methylarginine. Plant Cell Tissue Organ Cult 27:27–32CrossRefGoogle Scholar
  54. 54.
    Ammirato PV (1984) Induction, maintenance, and manipulation of development in embryogenic cell suspension cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Academic Press, New York, pp 139–151Google Scholar
  55. 55.
    Jiménez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395PubMedCrossRefGoogle Scholar
  56. 56.
    Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Montague MJ, Armstrong TA, Jaworski EG (1979) Polyamine metabolism in embryogenic cells of daucus carota: II. Changes in arginine decarboxylase activity. Plant Physiol 63:341–345PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223:1433–1435PubMedCrossRefGoogle Scholar
  59. 59.
    Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidase and nitric oxid in development, abiotic and biotic stresses. Plant Sci 181:593–603PubMedCrossRefGoogle Scholar
  60. 60.
    Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639PubMedCrossRefGoogle Scholar
  61. 61.
    Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim Biophys Acta 1860:95–105PubMedCrossRefGoogle Scholar
  62. 62.
    Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210PubMedCrossRefGoogle Scholar
  63. 63.
    Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dai YR, Wang J (1987) Relation of polyamine titer to photoperiodic induction of flowering in Pharbitis. Plant Sci 51:137–139CrossRefGoogle Scholar
  66. 66.
    Hamasaki N, Galston AW (1990) The polyamines of Xanthium strumarium and their response to photoperiod. Photochem Photobiol 52:181–186PubMedCrossRefGoogle Scholar
  67. 67.
    Havelange A, Lejeune P, Bernier G, Kaur-Sawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96:59–65CrossRefGoogle Scholar
  68. 68.
    Wada N, Shinozaki M, Iwamura H (1994) Flower induction by polyamines and related compounds in seedlings of morning glory (Pharbitis nil cv. Kidachi). Plant Cell Physiol 35:469–472Google Scholar
  69. 69.
    Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108:314–320CrossRefGoogle Scholar
  70. 70.
    Tiburcio AF, Kaur-Sawhney R, Galston AW (1988) Polyamine biosynthesis during vegetative-and floral-bud differentiation in thin-layer tobacco tissues cultures. Plant Cell Physiol 29:1241–1249Google Scholar
  71. 71.
    DeCantu LB, Kandeler R (1989) Significance of polyamines for flowering in Spirodela punctata. Plant Cell Physiol 30:455–458Google Scholar
  72. 72.
    Malmberg RL, McIndoo J (1983) Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305:623–625CrossRefGoogle Scholar
  73. 73.
    Malmberg RL, McIndoo J (1988) Nicotiana plants with altered polyamine levels and floral organs. Patent US4751348Google Scholar
  74. 74.
    Gerats AG, Kaye C, Collins C, Malmberg RL (1988) Polyamine levels in petunia genotypes with normal and abnormal floral morphologies. Plant Physiol 86:390–393PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Rastogi R, Sawhney VK (1990) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill.): II. Effects of polyamines and their biosynthetic inhibitors on the development of normal and mutant floral buds cultured in vitro. Plant Physiol 93:446–452PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lu J-H, Honda C, Moriguchi T (2006) Involvement of polyamines in floral and fruit development. Jpn Agric Res Q 40:51–58CrossRefGoogle Scholar
  77. 77.
    Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833PubMedCrossRefGoogle Scholar
  78. 78.
    Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132PubMedCrossRefGoogle Scholar
  79. 79.
    Jibran R, A Hunter D, P Dijkwel P (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561PubMedCrossRefGoogle Scholar
  80. 80.
    Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34CrossRefGoogle Scholar
  81. 81.
    Kaur-Sawhney R, Flores HE, Galston AW (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol 65:368–371PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tiburcio AF, Kaur-Sawhney R, Galston AW (1986) Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol 82:375–378PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically-stressed oat leaves. Planta 189:201–206CrossRefGoogle Scholar
  84. 84.
    Capell T, Campos JL, Tiburcio AF (1993) Antisenescence properties of guazatine in osmotically-stressed oat leaves. Phytochemistry 33:785–788CrossRefGoogle Scholar
  85. 85.
    Borrell A, Carbonell R, Farràs R, Puig-Parellada P, Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390CrossRefGoogle Scholar
  86. 86.
    Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618PubMedCrossRefGoogle Scholar
  87. 87.
    Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847PubMedCrossRefGoogle Scholar
  88. 88.
    Sequera-Mutiozabal MI, Erban A, Kopka J, Atanasov KE, Bastida J, Fotopoulos V, Alcázar R, Tiburcio AF (2016) Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci 7:173PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:120PubMedPubMedCentralGoogle Scholar
  90. 90.
    Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Thompson JE, Tzann-Wei Wang T-W, Lu DL (2003) DNA encoding a plant deoxyhypusine synthase, a plant eukaryotic initiation factor 5A, transgenic plants and a method for controlling senescence programmed and cell death in plants. Patent US 6538182 B1Google Scholar
  92. 92.
    Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol 52:1223–1235PubMedCrossRefGoogle Scholar
  93. 93.
    Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE (2005) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol 138:1372–1382PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, Kakeyama M, Benno Y, Matsumoto M (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Stabyl GL, Basel RM, Michael S, Reid MS, Dodge LL (1993) Efficacies of commercial anti-ethylene products for fresh cut flowers. HortTechnology 3:199–202Google Scholar
  96. 96.
    Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409PubMedCrossRefGoogle Scholar
  97. 97.
    Leshem YY, Wills RBH, Veng-Va Ku V (1998) Evidence for the function of the free radical gas – nitric oxide (NO) – as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833CrossRefGoogle Scholar
  98. 98.
    Farahi MH, Khalighi A, Kholdbarin B, Akbar-boojar MM, Eshghi S (2013) Morphological responses and vase life of Rosa hybrida cv. dolcvita to polyamines spray in hydroponic system. World Appl Sci J 21:1681–1686Google Scholar
  99. 99.
    Ling X, ZhongShen W, Zifa D (2007) Effects of polyamines and penicillin on preservation of cut roses. J Nanjing For Univ Nat Sci Ed 31:53–56Google Scholar
  100. 100.
    Nada K, Kawaguchi T, Tachibana S (2004) Effects of polyamines in the vase water on the vase life of cut rose flowers. Hortic Res (Japan) 3:101–104CrossRefGoogle Scholar
  101. 101.
    Dantuluri VSR, Misra RL, Singh VP (2008) Effect of polyamines on post harvest life of gladiolus spikes. J Ornam Hort 11:66–68Google Scholar
  102. 102.
    Upfold SJ, Van Staden J (1991) Polyamines and carnation flower senescence: endogenous levels and the effect of applied polyamines on senescence. Plant Growth Regul 10:355–362CrossRefGoogle Scholar
  103. 103.
    Mahgoub MH, Abd El Aziz NG, Mazhar MA (2011) Response of Dahlia pinnata L plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American-Eurasian J Agric Environ Sci 10:769–775Google Scholar
  104. 104.
    Iman Talaat M, Bekheta MA, Mahgoub MM (2005) Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int J Agric Biol 7:210–213Google Scholar
  105. 105.
    Mahros KM, El-Saady MB, Mahgoub MH, Afaf MH, El-Sayed MI (2011) Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. Plant J Am Sci 7:399–408Google Scholar
  106. 106.
    Gelein C (1984) Catalogue: cut flowers-pot plants-bedding plants. Verenige Bloemenveilingen Aalsmeer, The Netherlands, pp 105–115Google Scholar
  107. 107.
    Tiburcio AF, Campos JL, Figueras X, Marce M, Capell T, Riera R, Bestford RT (1993) Polyamines and morphogenesis in monocots: experimental systems and mechanisms of action. In: Roubelakis-Angelakis KA, Tran Thanh Van K (eds) Morphogenesis in plants. Plenum Press, New York, pp 113–135CrossRefGoogle Scholar
  108. 108.
    Miller SR, Abdulkadri A (2008) The U.S. economic impact of the IR-4 ornamental horticulture project. Dec 4, pp 1–18Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant PhysiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations