Advertisement

Polyamines pp 469-488 | Cite as

Polyamines and Cancer

  • Elisabetta Damiani
  • Heather M. Wallace
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1694)

Abstract

This chapter provides an overview of how the polyamine pathway has been exploited as a target for the treatment and prevention of multiple forms of cancer, since this pathway is disrupted in all cancers. It is divided into three main sections. The first explores how the polyamine pathway has been targeted for chemotherapy, starting from the first drug to target it, difluoromethylornithine (DFMO) to the large variety of polyamine analogues that have been synthesised and tested throughout the years with all their potentials and pitfalls. The second section focuses on the use of polyamines as vectors for drug delivery. Knowing that the polyamine transport system is upregulated in cancers and that polyamines naturally bind to DNA, a range of polyamine analogues and polyamine-like structures have been synthesised to target epigenetic regulators, with encouraging results. Furthermore, the use of polyamines as transport vectors to introduce toxic/bioactive/fluorescent agents more selectively to the intended target in cancer cells is discussed. The last section concentrates on chemoprevention, where the different strategies that have been undertaken to interfere with polyamine metabolism and function for antiproliferative intervention are outlined and discussed.

Key words

Polyamines Cancer Chemoprevention Chemotherapy Drug delivery 

References

  1. 1.
    Russell DH, Levy CC, Schimpff SC et al (1971) Urinary polyamines in cancer patients. Cancer Res 31:1555–1558PubMedGoogle Scholar
  2. 2.
    Kingsnorth AN, Wallace HM, Bundred NJ et al (1984) Polyamines in breast cancer. Br J Surg 71:352–356PubMedCrossRefGoogle Scholar
  3. 3.
    Kingsnorth AN, Lumsden AB, Wallace HM (1984) Polyamines in colorectal cancer. Br J Surg 71:791–794PubMedCrossRefGoogle Scholar
  4. 4.
    Giardiello FM, Hamilton SR, Hylind LM et al (1997) Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 57:199–201PubMedGoogle Scholar
  5. 5.
    Manni A, Grove R, Kunselman S et al (1995) Involvement of the polyamine pathway in breast cancer progression. Cancer Lett 92:49–57PubMedCrossRefGoogle Scholar
  6. 6.
    Bello-Fernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A 90:7804–7808PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223PubMedCrossRefGoogle Scholar
  8. 8.
    Prakash NJ, Schechter PJ, Grove J et al (1978) Effect of alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ornithine decarboxylase, on L1210 leukemia in mice. Cancer Res 38:3059–3062PubMedGoogle Scholar
  9. 9.
    Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951PubMedGoogle Scholar
  10. 10.
    Abeloff MD, Rosen ST, Luk GD et al (1986) Phase II trials of alpha-difluoromethylornithine, an inhibitor of polyamine synthesis, in advanced small cell lung cancer and colon cancer. Cancer Treat Rep 70:843–845PubMedGoogle Scholar
  11. 11.
    Horn Y, Schechter PJ, Marton LJ (1987) Phase I–II clinical trial with alpha-difluoromethylornithine—an inhibitor of polyamine biosynthesis. Eur J Cancer Clin Oncol 23:1103–1107PubMedCrossRefGoogle Scholar
  12. 12.
    Levin VA, Prados MD, Yung WK et al (1992) Treatment of recurrent gliomas with eflornithine. J Natl Cancer Inst 84:1432–1437PubMedCrossRefGoogle Scholar
  13. 13.
    Prados MD, Wara WM, Sneed PK et al (2001) Phase III trial of accelerated hyperfractionation with or without difluromethylornithine (DFMO) versus standard fractionated radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 49:71–77PubMedCrossRefGoogle Scholar
  14. 14.
    Meyskens FL Jr, Gerner EW, Emerson S et al (1998) Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst 90:1212–1218PubMedCrossRefGoogle Scholar
  15. 15.
    Williams-Ashman HG, Schenone A (1972) Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun 46:288–295PubMedCrossRefGoogle Scholar
  16. 16.
    Nass MM (1984) Analysis of methylglyoxal bis(guanylhydrazone)-induced alterations of hamster tumor mitochondria by correlated studies of selective rhodamine binding, ultrastructural damage, DNA replication, and reversibility. Cancer Res 44:2677–2688PubMedGoogle Scholar
  17. 17.
    Regenass U, Mett H, Stanek J et al (1994) CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumor activity. Cancer Res 54:3210–3217PubMedGoogle Scholar
  18. 18.
    Pless M, Belhadj K, Menssen HD et al (2004) Clinical efficacy, tolerability, and safety of SAM486A, a novel polyamine biosynthesis inhibitor, in patients with relapsed or refractory non-Hodgkin’s lymphoma: results from a phase II multicenter study. Clin Cancer Res 10:1299–1305PubMedCrossRefGoogle Scholar
  19. 19.
    van Zuylen L, Bridgewater J, Sparreboom A et al (2004) Phase I and pharmacokinetic study of the polyamine synthesis inhibitor SAM486A in combination with 5-fluorouracil/leucovorin in metastatic colorectal cancer. Clin Cancer Res 10:1949–1955PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace HM, Niiranen K (2007) Polyamine analogues – an update. Amino Acids 33:261–265PubMedCrossRefGoogle Scholar
  21. 21.
    Wallace HM, Fraser AV (2003) Polyamine analogues as anticancer drugs. Biochem Soc Trans 31:393–396PubMedCrossRefGoogle Scholar
  22. 22.
    Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390PubMedCrossRefGoogle Scholar
  23. 23.
    Porter CW, Bergeron RJ (1988) Regulation of polyamine biosynthetic activity by spermidine and spermine analogs—a novel antiproliferative strategy. Adv Exp Med Biol 250:677–690PubMedCrossRefGoogle Scholar
  24. 24.
    Porter CW, Ganis B, Libby PR et al (1991) Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res 51:3715–3720PubMedGoogle Scholar
  25. 25.
    Wallace HM, Mackarel AJ (1998) Regulation of polyamine acetylation and efflux in human cancer cells. Biochem Soc Trans 26:571–575PubMedCrossRefGoogle Scholar
  26. 26.
    Pledgie-Tracy A, Billam M, Hacker A et al (2010) The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother Pharmacol 65:1067–1081PubMedCrossRefGoogle Scholar
  27. 27.
    Casero RA Jr, Celano P, Ervin SJ et al (1989) Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res 49:3829–3833PubMedGoogle Scholar
  28. 28.
    Wolff AC, Armstrong DK, Fetting JH et al (2003) A Phase II study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin Cancer Res 9:5922–5928PubMedGoogle Scholar
  29. 29.
    Streiff RR, Bender JF (2001) Phase 1 study of N1-N11-diethylnorspermine (DENSPM) administered TID for 6 days in patients with advanced malignancies. Investig New Drugs 19:29–39CrossRefGoogle Scholar
  30. 30.
    Hector S, Porter CW, Kramer DL et al (2004) Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1,N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Mol Cancer Ther 3:813–822PubMedGoogle Scholar
  31. 31.
    Choi W, Gerner EW, Ramdas L et al (2005) Combination of 5-fluorouracil and N1,N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J Biol Chem 280:3295–3304PubMedCrossRefGoogle Scholar
  32. 32.
    Casero RA Jr, Mank AR, Saab NH et al (1995) Growth and biochemical effects of unsymmetrically substituted polyamine analogues in human lung tumor cells 1. Cancer Chemother Pharmacol 36:69–74PubMedCrossRefGoogle Scholar
  33. 33.
    Hacker A, Marton LJ, Sobolewski M et al (2008) In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells. Cancer Chemother Pharmacol 63:45–53PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Saab NH, West EE, Bieszk NC et al (1993) Synthesis and evaluation of unsymmetrically substituted polyamine analogues as modulators of human spermidine/spermine-N1-acetyltransferase (SSAT) and as potential antitumor agents. J Med Chem 36:2998–3004PubMedCrossRefGoogle Scholar
  35. 35.
    Fraser AV, Woster PM, Wallace HM (2002) Induction of apoptosis in human leukaemic cells by IPENSpm, a novel polyamine analogue and anti-metabolite. Biochem J 367:307–312PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dredge K, Kink JA, Johnson RM et al (2009) The polyamine analog PG11047 potentiates the antitumor activity of cisplatin and bevacizumab in preclinical models of lung and prostate cancer. Cancer Chemother Pharmacol 65:191–195PubMedCrossRefGoogle Scholar
  37. 37.
    Carew JS, Nawrocki ST, Reddy VK et al (2008) The novel polyamine analogue CGC-11093 enhances the antimyeloma activity of bortezomib. Cancer Res 68:4783–4790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Huang Y, Hager ER, Phillips DL et al (2003) A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin Cancer Res 9(7):2769–2777PubMedPubMedCentralGoogle Scholar
  39. 39.
    Huang Y, Keen JC, Pledgie A et al (2006) Polyamine analogues down-regulate estrogen receptor alpha expression in human breast cancer cells. J Biol Chem 281:19055–19063PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953CrossRefPubMedGoogle Scholar
  41. 41.
    Zheng YC, Ma J, Wang Z et al (2015) A systematic review of histone lysine-specific demethylase 1 and its inhibitors. Med Res Rev 35:1032–1071PubMedCrossRefGoogle Scholar
  42. 42.
    Huang Y, Stewart TM, Wu Y et al (2009) Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15:7217–7228PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhu Q, Huang Y, Marton LJ et al (2012) Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells. Amino Acids 42:887–898PubMedCrossRefGoogle Scholar
  44. 44.
    Wu Y, Steinbergs N, Murray-Stewart T et al (2012) Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes. Biochem J 442:693–701PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nowotarski SL, Pachaiyappan B, Holshouser SL et al (2015) Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures. Bioorg Med Chem 23:1601–1612PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hazeldine S, Pachaiyappan B, Steinbergs N et al (2012) Low molecular weight amidoximes that act as potent inhibitors of lysine-specific demethylase 1. J Med Chem 55:7378–7391PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Milovica V, Turchanowa L, Khomutov AR et al (2001) Hydroxylamine-containing inhibitors of polyamine biosynthesis and impairment of colon cancer cell growth. Biochem Pharmacol 61:199–206PubMedCrossRefGoogle Scholar
  48. 48.
    Liang F, Wan S, Li Z et al (2006) Medical applications of macrocyclic polyamines. Curr Med Chem 13:711–727PubMedCrossRefGoogle Scholar
  49. 49.
    Pasini A, Caldarera CM, Giordano E (2014) Chromatin remodeling by polyamines and polyamine analogs. Amino Acids 46:595–603PubMedCrossRefGoogle Scholar
  50. 50.
    Varghese S, Gupta D, Baran T et al (2005) Alkyl-substituted polyaminohydroxamic acids: a novel class of targeted histone deacetylase inhibitors. J Med Chem 48:6350–6365PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Palmer AJ, Wallace HM (2010) The polyamine transport system as a target for anticancer drug development. Amino Acids 38:415–422PubMedCrossRefGoogle Scholar
  52. 52.
    Aldana-Masangkay GI, Sakamoto KM (2011) The role of HDAC6 in cancer. J Biomed Biotechnol 2011:875824PubMedCrossRefGoogle Scholar
  53. 53.
    Varghese S, Senanayake T, Murray-Stewart T et al (2008) Polyaminohydroxamic acids and polyaminobenzamides as isoform selective histone deacetylase inhibitors. J Med Chem 51:2447–2456PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sharma SK, Hazeldine S, Crowley ML et al (2012) Polyamine-based small molecule epigenetic modulators. Medchemcomm 3:14–21PubMedCrossRefGoogle Scholar
  55. 55.
    Bandyopadhyay K, Baneres JL, Martin A et al (2009) Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 8:2779–2788PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Phanstiel O 4th, Kaur N, Delcros JG (2007) Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter. Amino Acids 33:305–313PubMedCrossRefGoogle Scholar
  57. 57.
    Xie S, Wang J, Zhang Y et al (2010) Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 7:1049–1061PubMedCrossRefGoogle Scholar
  58. 58.
    Thibault B, Clement E, Zorza G et al (2016) F14512, a polyamine-vectorized inhibitor of topoisomerase II, exhibits a marked anti-tumor activity in ovarian cancer. Cancer Lett 370:10–18PubMedCrossRefGoogle Scholar
  59. 59.
    Annereau JP, Brel V, Dumontet C et al (2010) A fluorescent biomarker of the polyamine transport system to select patients with AML for F14512 treatment. Leuk Res 34:1383–1389PubMedCrossRefGoogle Scholar
  60. 60.
    Kruczynski A, Pillon A, Creancier L et al (2013) F14512, a polyamine-vectorized anti-cancer drug, currently in clinical trials exhibits a marked preclinical anti-leukemic activity. Leukemia 27:2139–2148PubMedCrossRefGoogle Scholar
  61. 61.
    Traquete R, Ghani RA, Phanstiel O et al (2013) Ant 4,4, a polyamine-anthracene conjugate, induces cell death and recovery in human promyelogenous leukemia cells (HL-60). Amino Acids 44:1193–1203PubMedCrossRefGoogle Scholar
  62. 62.
    Tian ZY, Xie SQ, Du YW et al (2009) Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. Eur J Med Chem 44:393–399PubMedCrossRefGoogle Scholar
  63. 63.
    Li M, Li Q, Zhang YH et al (2013) Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro. Anti-Cancer Drugs 24:32–42PubMedCrossRefGoogle Scholar
  64. 64.
    Magoulas G, Papaioannou D, Papadimou E et al (2009) Preparation of spermine conjugates with acidic retinoids with potent ribonuclease P inhibitory activity. Eur J Med Chem 44:2689–2695PubMedCrossRefGoogle Scholar
  65. 65.
    Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364PubMedCrossRefGoogle Scholar
  66. 66.
    Vourtsis D, Lamprou M, Sadikoglou E et al (2013) Effect of an all-trans-retinoic acid conjugate with spermine on viability of human prostate cancer and endothelial cells in vitro and angiogenesis in vivo. Eur J Pharmacol 698:122–130PubMedCrossRefGoogle Scholar
  67. 67.
    Agostinelli E, Vianello F, Magliulo G et al (2015) Nanoparticle strategies for cancer therapeutics: nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (review). Int J Oncol 46:5–16PubMedCrossRefGoogle Scholar
  68. 68.
    Cui PF, Xing L, Qiao JB et al (2016) Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer. Int J Pharm 506:79–86PubMedCrossRefGoogle Scholar
  69. 69.
    Jeter JM, Alberts DS (2012) Difluoromethylornithine: the proof is in the polyamines. Cancer Prev Res (Phila) 5:1341–1344CrossRefGoogle Scholar
  70. 70.
    Shapiro J, Lui H (2001) Vaniqa—eflornithine 13.9% cream. Skin Therapy Lett 6:1–3. 5PubMedGoogle Scholar
  71. 71.
    Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15:758–761PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Burke CA, Dekker E, Samadder NJ et al (2016) Efficacy and safety of eflornithine (CPP-1X)/sulindac combination therapy versus each as monotherapy in patients with familial adenomatous polyposis (FAP): design and rationale of a randomized, double-blind, Phase III trial. BMC Gastroenterol 16:87PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Witherspoon M, Chen Q, Kopelovich L et al (2013) Unbiased metabolite profiling indicates that a diminished thymidine pool is the underlying mechanism of colon cancer chemoprevention by alpha-difluoromethylornithine. Cancer Discov 3:1072–1081PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zell JA, McLaren CE, Chen WP et al (2010) Ornithine decarboxylase-1 polymorphism, chemoprevention with eflornithine and sulindac, and outcomes among colorectal adenoma patients. J Natl Cancer Inst 102:1513–1516PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bassiri H, Benavides A, Haber M et al (2015) Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma. Transl Pediatr 4:226–238PubMedPubMedCentralGoogle Scholar
  76. 76.
    Westermann F, Muth D, Benner A et al (2008) Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol 9:R150PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wallick CJ, Gamper I, Thorne M et al (2005) Key role for p27Kip1, retinoblastoma protein Rb, and MYCN in polyamine inhibitor-induced G1 cell cycle arrest in MYCN-amplified human neuroblastoma cells. Oncogene 24:5606–5618PubMedCrossRefGoogle Scholar
  78. 78.
    Yco LP, Geerts D, Mocz G et al (2015) Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target. BMC Cancer 15:477–488PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Saulnier Sholler GL, Gerner EW, Bergendahl G et al (2015) A phase I trial of DFMO targeting polyamine addiction in patients with relapsed/refractory neuroblastoma. PLoS One 10:e0127246PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Alberts DS, Dorr RT, Einspahr JG et al (2000) Chemoprevention of human actinic keratoses by topical 2-(difluoromethyl)-dl-ornithine. Cancer Epidemiol Biomark Prev 9:1281–1286Google Scholar
  81. 81.
    Kreul SM, Havighurst T, Kim K et al (2012) A phase III skin cancer chemoprevention study of DFMO: long-term follow-up of skin cancer events and toxicity. Cancer Prev Res (Phila) 5:1368–1374CrossRefGoogle Scholar
  82. 82.
    Jeter JM, Curiel-Lewandrowski C, Stratton SP et al (2016) Phase IIB randomized study of topical difluoromethylornithine and topical diclofenac on sun-damaged skin of the forearm. Cancer Prev Res (Phila) 9:128–134CrossRefGoogle Scholar
  83. 83.
    Elmets CA, Athar M (2010) Targeting ornithine decarboxylase for the prevention of nonmelanoma skin cancer in humans. Cancer Prev Res (Phila) 3:8–11CrossRefGoogle Scholar
  84. 84.
    Meyskens FL Jr, Simoneau AR, Gerner EW (2014) Chemoprevention of prostate cancer with the polyamine synthesis inhibitor difluoromethylornithine. Recent Results Cancer Res 202:115–120PubMedCrossRefGoogle Scholar
  85. 85.
    Sinicrope FA, Broaddus R, Joshi N et al (2011) Evaluation of difluoromethylornithine for the chemoprevention of Barrett’s esophagus and mucosal dysplasia. Cancer Prev Res (Phila) 4:829–839CrossRefGoogle Scholar
  86. 86.
    Vlastos AT, West LA, Atkinson EN et al (2005) Results of a phase II double-blinded randomized clinical trial of difluoromethylornithine for cervical intraepithelial neoplasia grades 2 to 3. Clin Cancer Res 11:390–396PubMedGoogle Scholar
  87. 87.
    Messing E, Kim KM, Sharkey F et al (2006) Randomized prospective phase III trial of difluoromethylornithine vs placebo in preventing recurrence of completely resected low risk superficial bladder cancer. J Urol 176:500–504PubMedCrossRefGoogle Scholar
  88. 88.
    Fabian CJ, Kimler BF, Brady DA et al (2002) A phase II breast cancer chemoprevention trial of oral alpha-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res 8:3105–3117PubMedGoogle Scholar
  89. 89.
    Babbar N, Gerner EW, Casero RA Jr (2006) Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochem J 394:317–324PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Xu H, Chaturvedi R, Cheng Y et al (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64:8521–8525PubMedCrossRefGoogle Scholar
  91. 91.
    Chaturvedi R, de Sablet T, Peek RM et al (2012) Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk. Gut Microbes 3:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chaturvedi R, de Sablet T, Asim M et al (2015) Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 34:3429–3440CrossRefPubMedGoogle Scholar
  93. 93.
    Murray-Stewart T, Sierra JC, Piazuelo MB et al (2016) Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer. Oncogene 35:5480–5488PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Goodwin AC, Destefano Shields CE, Wu S et al (2011) Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 108:15354–15359PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    O’Hagan HM, Wang W, Sen S et al (2011) Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20:606–619PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hong SK, Chaturvedi R, Piazuelo MB et al (2010) Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 16:1557–1566PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Goodwin AC, Jadallah S, Toubaji A et al (2008) Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate 68:766–772PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tucker JM, Murphy JT, Kisiel N et al (2005) Potent modulation of intestinal tumorigenesis in Apcmin/+ mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Cancer Res 65:5390–5398PubMedCrossRefGoogle Scholar
  99. 99.
    Wang X, Feith DJ, Welsh P et al (2007) Studies of the mechanism by which increased spermidine/spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis 28:2404–2411PubMedCrossRefGoogle Scholar
  100. 100.
    Hughes A, Smith NI, Wallace HM (2003) Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells. Biochem J 374:481–488PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Saunders FR, Wallace HM (2007) Polyamine metabolism and cancer prevention. Biochem Soc Trans 35:364–368PubMedCrossRefGoogle Scholar
  102. 102.
    Babbar N, Gerner EW (2011) Targeting polyamines and inflammation for cancer prevention. Recent Results Cancer Res 188:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Xie SQ, Zhang YH, Li Q et al (2012) COX-2-independent induction of apoptosis by celecoxib and polyamine naphthalimide conjugate mediated by polyamine depression in colorectal cancer cell lines. Int J Color Dis 27:861–868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
  2. 2.Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly

Personalised recommendations