Polyamines in the Context of Metabolic Networks

  • Wegi Wuddineh
  • Rakesh Minocha
  • Subhash C. MinochaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1694)


Polyamines (PAs) are essential biomolecules that are known to be involved in the regulation of many plant developmental and growth processes as well as their response to different environmental stimuli. Maintaining the cellular pools of PAs or their metabolic precursors and by-products is critical to accomplish their normal functions. Therefore, the titre of PAs in the cells must be under tight regulation to enable cellular PA homeostasis. Polyamine homeostasis is hence achieved by the regulation of their input into the cellular PA pool, their conversion into secondary metabolites, their transport to other issues/organs, and their catabolism or turnover. The major contributors of input to the PA pools are their in vivo biosynthesis, interconversion between different PAs, and transport from other tissues/organs; while the output or turnover of PAs is facilitated by transport, conjugation and catabolism. Polyamine metabolic pathways including the biosynthesis, catabolism/turnover and conjugation with various organic molecules have been widely studied in all kingdoms. Discoveries on the molecular transporters facilitating the intracellular and intercellular translocation of PAs have also been reported. Numerous recent studies using transgenic approaches and mutagenesis have shown that plants can tolerate quite large concentrations of PAs in the cells; even though, at times, high cellular accumulation of PAs is quite detrimental, and so is high rate of catabolism. The mechanism by which plants tolerate such large quantities of PAs is still unclear. Interestingly, enhanced PA biosynthesis via manipulation of the PA metabolic networks has been suggested to contribute directly to increased growth and improvements in plant abiotic and biotic stress responses; hence greater biomass and productivity. Genetic manipulation of the PA metabolic networks has also been shown to improve plant nitrogen assimilation capacity, which may in turn lead to enhanced carbon assimilation. These potential benefits on top of the widely accepted role of PAs in improving plants’ tolerance to biotic and abiotic stressors are invaluable tools for future plant improvement strategies.

Key words

Putrescine Spermidine Spermine Nitrogen NO Glutamate Proline TCA Transport 


  1. 1.
    Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381CrossRefPubMedGoogle Scholar
  2. 2.
    Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249CrossRefGoogle Scholar
  3. 3.
    Tiburcio AF, Altabella T, Bitrión M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18CrossRefGoogle Scholar
  4. 4.
    Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015CrossRefGoogle Scholar
  5. 5.
    Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3:1061–1066CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bitrión M, Zarza X, Altabella T, Tiburcio AF, Alcózar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528CrossRefGoogle Scholar
  7. 7.
    Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560CrossRefPubMedGoogle Scholar
  9. 9.
    Alcázar R, Tiburcio AF (2016) Polyamines in stress protection: applications in agriculture. In: Abiotic stress response in plants. Wiley-VCH Verlag GmbH & Co, KGaA, pp 411–422CrossRefGoogle Scholar
  10. 10.
    Shao L, Majumdar R, Minocha S (2012) Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 42:813–830CrossRefPubMedGoogle Scholar
  11. 11.
    Hu WW, Gong H, Pua EC (2005) The pivotal roles of the plant S-adenosylmethionine decarboxylase 5′ untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol Biochem 138:276–286Google Scholar
  12. 12.
    Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24:1202–1216CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Persson L (1977) Evidence of decarboxylation of lysine by mammalian ornithine decarboxylase. Acta Physiol Scand 100:424–429CrossRefPubMedGoogle Scholar
  14. 14.
    Quan Y, Minocha R, Minocha SC (2002) Genetic manipulation of polyamine metabolism in poplar II: effects on ethylene biosynthesis. Plant Physiol Biochem 40:929–937CrossRefGoogle Scholar
  15. 15.
    Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T, Handa AK, Mattoo AK (2014) Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids 46:729–742CrossRefPubMedGoogle Scholar
  16. 16.
    Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426CrossRefGoogle Scholar
  17. 17.
    Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15Google Scholar
  18. 18.
    Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:1343PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115CrossRefPubMedGoogle Scholar
  20. 20.
    Bown AW, Shelp BJ (2016) Plant GABA: not just a metabolite. Trends Plant Sci 21:811–813CrossRefPubMedGoogle Scholar
  21. 21.
    Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19CrossRefPubMedGoogle Scholar
  22. 22.
    Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol Biochem 157:200–215Google Scholar
  23. 23.
    Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824CrossRefPubMedGoogle Scholar
  24. 24.
    Peng M, Gao Y, Chen W, Wang W, Shen S, Shi J, Wang C, Zhang Y, Zou L, Wang S, Wan J, Liu X, Gong L, Luo J (2016) Evolutionarily distinct BAHD N-acyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell 28:1533–1550PubMedPubMedCentralGoogle Scholar
  25. 25.
    Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen: from microsporogenesis to fertilization. Front Plant Sci 7:155PubMedPubMedCentralGoogle Scholar
  26. 26.
    Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:120PubMedPubMedCentralGoogle Scholar
  27. 27.
    Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tanabe K, Hojo Y, Shinya T, Galis I (2016) Molecular evidence for biochemical diversification of phenolamide biosynthesis in rice plants. J Integr Plant Biol 58:903–913CrossRefPubMedGoogle Scholar
  29. 29.
    Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344(Pt 3):633–642CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fujita M, Shinozaki K (2015) Polyamine transport systems in plants. In: Kusano T, Suzuki H (eds) Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Springer Japan, Tokyo, pp 179–185Google Scholar
  31. 31.
    Mulangi V, Phuntumart V, Aouida M, Ramotar D, Morris P (2012) Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta 235:1–11CrossRefPubMedGoogle Scholar
  32. 32.
    Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, Urano K, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2012) Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci U S A 109:6343–6347CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fujita M, Shinozaki K (2014) Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol 55:855–861CrossRefPubMedGoogle Scholar
  34. 34.
    Li J, Mu J, Bai J, Fu F, Zou T, An F, Zhang J, Jing H, Wang Q, Li Z, Yang S, Zuo J (2013) Paraquat resistant1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol 162:470–483CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sagor GH, Berberich T, Kojima S, Niitsu M, Kusano T (2016) Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Rep 35:1247–1257CrossRefPubMedGoogle Scholar
  36. 36.
    Shen Y, Ruan Q, Chai H, Yuan Y, Yang W, Chen J, Xin Z, Shi H (2016) The arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability. Plant J 88:1006–1021CrossRefPubMedGoogle Scholar
  37. 37.
    Altman A, Levin N (1993) Interactions of polyamines and nitrogen nutrition in plants. Physiol Plant 89:653–658CrossRefGoogle Scholar
  38. 38.
    Le Rudulier D, Goas G (1977) La diamine oxydase dans les jeunes plantes de Glycine max. Phytochemistry 16:509–511CrossRefGoogle Scholar
  39. 39.
    Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Houdusse F, Zamarreño AM, Garnica M, García-Mina J (2005) The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: the relationships with free polyamines and plant proline contents. Funct Plant Biol 32:1057–1067CrossRefGoogle Scholar
  41. 41.
    Minocha R, Lee JS, Long S, Bhatnagar P, Minocha SC (2004) Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium. Tree Physiol 24:551–560CrossRefPubMedGoogle Scholar
  42. 42.
    Serapiglia MJ, Minocha R, Minocha SC (2008) Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea Rubens). Tree Physiol 28:1793–1803CrossRefGoogle Scholar
  43. 43.
    Majumdar R, Shao L, Minocha R, Long S, Minocha SC (2013) Ornithine: the overlooked molecule in the regulation of polyamine metabolism. Plant Cell Physiol 54:990–1004CrossRefPubMedGoogle Scholar
  44. 44.
    Page AF, Cseke LJ, Minocha R, Turlapati SA, Podila GK, Ulanov A, Li Z, Minocha SC (2016) Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome. BMC Plant Biol 16:113CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lu Y, Luo F, Yang M, Li X, Lian X (2011) Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.) Sci China Life Sci 54:651–663CrossRefPubMedGoogle Scholar
  46. 46.
    Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175. doi:10.3389/fpls.2014.00175CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    DeScenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22:113–127CrossRefPubMedGoogle Scholar
  48. 48.
    Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bhatnagar P, Minocha R, Minocha SC (2002) Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol 128:1455–1469CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mohapatra S, Minocha R, Long S, Minocha SC (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129CrossRefPubMedGoogle Scholar
  51. 51.
    Dalton HL, Blomstedt CK, Neale AD, Gleadow R, DeBoer KD, Hamill JD (2016) Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L. J Exp Bot 67:3367–3381CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xing SG, Jun YB, Hau ZW, Liang LY (2007) Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. Roots. Plant Physiol Biochem 45:560–566CrossRefPubMedGoogle Scholar
  53. 53.
    Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefPubMedGoogle Scholar
  54. 54.
    Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324CrossRefPubMedGoogle Scholar
  55. 55.
    Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167CrossRefPubMedGoogle Scholar
  56. 56.
    Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Kumashiro T, Nagata T, Ohata T, Mori S (1989) Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megalosiphon). Biometals 2:142–145Google Scholar
  57. 57.
    Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154CrossRefPubMedGoogle Scholar
  58. 58.
    Harpaz-Saad S, Yoon GM, Mattoo AK, Kieber JJ (2012) The formation of ACC and competition between PAs and ethylene for SAM. Annu Plant Rev 44:53–81Google Scholar
  59. 59.
    Hanfrey C, Elliott KA, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2005) A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J Biol Chem 280:39229–39237CrossRefPubMedGoogle Scholar
  60. 60.
    Majumdar R (2011) Polyamine metabolism in Arabidopsis: transgenic manipulation and gene expression. University of New Hampshire, Durham, NH, USAGoogle Scholar
  61. 61.
    Yang W, Yin Y, Li Y, Cai T, Ni Y, Peng D, Wang Z (2014) Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. J Plant Growth Regul 72:189–201CrossRefGoogle Scholar
  62. 62.
    Bürstenbinder K, Waduwara I, Schoor S, Moffatt BA, Wirtz M, Minocha SC, Oppermann Y, Bouchereau A, Hell R, Sauter M (2010) Inhibition of 5′-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. Plant J 62:977–988PubMedGoogle Scholar
  63. 63.
    Waduwara-Jayabahu I, Oppermann Y, Wirtz M, Hull ZT, Schoor S, Plotnikov AN, Hell R, Sauter M, Moffatt BA (2012) Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis. Plant Physiol Biochem 158:1728–1744Google Scholar
  64. 64.
    Kumar A, Taylor MA, Arif SAM, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158CrossRefGoogle Scholar
  65. 65.
    Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618CrossRefPubMedGoogle Scholar
  66. 66.
    Van de Poel B, Bulens I, Oppermann Y, Hertog ML, Nicolai BM, Sauter M, Geeraerd AH (2013) S-adenosyl-L-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol Plant 148:176–188CrossRefPubMedGoogle Scholar
  67. 67.
    Feng HY, Wang ZM, Kong FN, Zhang MJ, Zhou SL (2011) Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol 53:388–398CrossRefPubMedGoogle Scholar
  68. 68.
    Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J (2013) Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot 64:2523–2538CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang X, Wang W, Wang M, Zhang HY, Liu JH (2016) The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis. Plant Cell Physiol 57:1865–1878CrossRefPubMedGoogle Scholar
  70. 70.
    von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol Biochem 119:1107–1114Google Scholar
  71. 71.
    Shi S-Q, Shi Z, Jiang Z-P, Qi L-W, Sun X-M, Li C-X, Liu J-F, Xiao W-F, Zhang S-G (2010) Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ 33:149–162CrossRefPubMedGoogle Scholar
  72. 72.
    Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133CrossRefPubMedGoogle Scholar
  73. 73.
    Mohapatra S, Minocha R, Long S, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271CrossRefPubMedGoogle Scholar
  74. 74.
    Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354CrossRefPubMedGoogle Scholar
  75. 75.
    Michaeli S, Fromm H (2015) Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front Plant Sci 6:419CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168CrossRefPubMedGoogle Scholar
  77. 77.
    Lozano-Juste J, León J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152:891–903CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wimalasekera R, Villar C, Begum T, Scherer GF (2011) Copper amine oxidase1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678CrossRefPubMedGoogle Scholar
  79. 79.
    Signorelli S, Dans PD, Coitino EL, Borsani O, Monza J (2015) Connecting proline and gamma-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10:e0115349CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Fellenberg C, Ziegler J, Handrick V, Vogt T (2012) Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens. Front Plant Sci 3:180CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100:675–688CrossRefGoogle Scholar
  82. 82.
    Takahashi Y (2016) The role of polyamines in plant disease resistance. Environ Control Biol 54:5CrossRefGoogle Scholar
  83. 83.
    Walters DR (2000) Polyamines in plant–microbe interactions. Physiol Mol Plant Pathol 57:137–146CrossRefGoogle Scholar
  84. 84.
    Kaur H, Heinzel N, Schottner M, Baldwin IT, Galis I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I (2012) MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A: polyamine transferases in Nicotiana attenuata. Plant Physiol 158:389–407CrossRefPubMedGoogle Scholar
  86. 86.
    Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455CrossRefGoogle Scholar
  87. 87.
    Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525CrossRefPubMedGoogle Scholar
  89. 89.
    Sanz L, Albertos P, Mateos I, Sanchez-Vicente I, Lechon T, Fernandez-Marcos M, Lorenzo O (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868CrossRefPubMedGoogle Scholar
  90. 90.
    Heloir MC, Kevers C, Hausman JF, Gaspar T (1996) Changes in the concentrations of auxins and polyamines during rooting of in-vitro-propagated walnut shoots. Tree Physiol 16:515–519CrossRefPubMedGoogle Scholar
  91. 91.
    Mendes AFS, Cidade LC, Otoni WC, Soares-Filho WS, Costa MGC (2011) Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol Plant 55:375CrossRefGoogle Scholar
  92. 92.
    Legocka J, Żarnowska A (2000) Role of polyamines in the cytokinin-dependent physiological processes II. Modulation of polyamine levels during cytokinin-stimulated expansion of cucumber cotyledons. Acta Physiol Plant 22:395–401CrossRefGoogle Scholar
  93. 93.
    Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. In: Kusano T, Suzuki H (eds) Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Springer Japan, Tokyo, pp 267–302Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Wegi Wuddineh
    • 1
  • Rakesh Minocha
    • 2
  • Subhash C. Minocha
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of New HampshireDurhamUSA
  2. 2.USDA Forest Service, Northern Research StationDurhamUSA

Personalised recommendations