Methods for Bacteriophage Preservation

  • Małgorzata B. ŁobockaEmail author
  • Aleksandra Głowacka
  • Piotr Golec
Part of the Methods in Molecular Biology book series (MIMB, volume 1693)


In a view of growing interest in bacteriophages as the most abundant members of microbial communities and as antibacterial agents, reliable methods for bacteriophage long-term preservation, that warrant the access to original or mutant stocks of unchanged properties, have become of crucial importance. A storage method that retains the infectivity of any kind of bacteriophage virions, either in a cell lysate or in a purified suspension, does not exist, due to the enormous diversity of bacteriophages and hence the differentiation of their sensitivity to various storage conditions. Here, we describe a method of long-term bacteriophage preservation, which is based on freezing of freshly infected susceptible bacteria at early stages of bacteriophage development. The infected bacteria release mature bacteriophages upon melting enabling the recovery of bacteriophage virions with high efficiency. The only limitation of this method is the sensitivity of bacteriophage host to deep-freezing, and thus it can be used for the long-term preservation of the vast majority of bacteriophages.

Key words

Bacteriophage preservation Deep-freezing Bacteriophage stability Bacteria Bacteriophage storage Microbiological methods 



This work was supported by funds from the Operational Program “Innovative Economy, 2007–2013,” project No. POIG 01.03.01-02-003/08, and statutory funds for the Faculty of Agriculture and Biology of the Warsaw University of Life Sciences, SGGW.


  1. 1.
    Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. World Fed Cult Collect Newslett 38:35–40Google Scholar
  2. 2.
    Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, LondonGoogle Scholar
  3. 3.
    Fortier LC, Moineau S (2009) Phage production and maintenance of stocks, including the expected stock lifetime. Methods Mol Biol 501:203–219CrossRefPubMedGoogle Scholar
  4. 4.
    Zierdt CH (1988) Stabilities of lyophilized Staphylococcus aureus typing bacteriophages. Appl Environ Microbiol 54:2590PubMedPubMedCentralGoogle Scholar
  5. 5.
    Warren JC, Hatch MT (1969) Survival of T3 coliphage in varied extracellular environments. I Viability of the coliphage during storage and in aerosols. Appl Microbiol 17:256–261PubMedPubMedCentralGoogle Scholar
  6. 6.
    Clark WA (1962) Comparison of several methods for preserving bacteriophages. Appl Microbiol 10:466–471PubMedPubMedCentralGoogle Scholar
  7. 7.
    Clark WA, Horneland W, Klein AG (1962) Attempts to freeze some bacteriophages to ultralow temperatures. Appl Microbiol 10:463–465PubMedPubMedCentralGoogle Scholar
  8. 8.
    Clark WA, Geary D (1973) Proceedings: preservation of bacteriophages by freezing and freeze-drying. Cryobiology 10:351–360CrossRefPubMedGoogle Scholar
  9. 9.
    Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177PubMedPubMedCentralGoogle Scholar
  10. 10.
    Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Adriaenssens EM, Lehman SM, Vandersteegen K, Vandenheuvel D, Philippe DL, Cornelissen A, Clokie MR, García AJ, De Proft M, Maes M, Lavigne R (2012) CIM(®)monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434:265–270Google Scholar
  12. 12.
    Bourdin G, Schmitt B, Marvin Guy L, Germond JE, Zuber S, Michot L, Reuteler G, Brüssow H (2014) Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl Environ Microbiol 80:1469–1476CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    American Type Culture Collection, American Type Culture Collection Bacterial Culture Guide, Tips and Techniques for Culturing Bacteria and Bacteriophages, p 35. 2012.
  14. 14.
    Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G, Mast J, Chanishvili N, Vaneechoutte M (2013) Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLoS One 8(7):e68797CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cuevas JM, Duffy S, Sanjuan R (2009) Point mutation rate of bacteriophage PhiX174. Genetics 183:747–749CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Santos ME, Drake JW (1994) Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants. Genetics 138:553–564PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wichman HA, Millstein J, Bull JJ (2005) Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics 170:19–31CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Golec P, Dąbrowski K, Hejnowicz MS, Gozdek A, Łoś JM, Węgrzyn G, Łobocka MB, Łoś M (2011) A reliable method for storage of tailed phages. J Microbiol Methods 84:486–489CrossRefPubMedGoogle Scholar
  20. 20.
    Koenig GL (2003) Viability of and plasmid retention in frozen recombinant Escherichia coli over time: a ten-year prospective study. Appl Environ Microbiol 69:6605–6609CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Heckly RJ (1978) Preservation of microorganisms. Adv Appl Microbiol 24:1–53CrossRefPubMedGoogle Scholar
  22. 22.
    Tedeschi R, De Paoli P (2011) Collection and preservation of frozen microorganisms. Methods Mol Biol 675:313–326CrossRefPubMedGoogle Scholar
  23. 23.
    Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttma B (1994) Effect of bacterial growth conditions and physiology on T4 infection. In: Karam JD, Drake JW, Kreuzer KN, Mosig G, Hall DH, Eiserling FA, Black LW, Spicer EW, Kutter E, Carlson K, Miller ES (eds) Molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 406–418Google Scholar
  24. 24.
    Piuri M, Hatfull GF (2006) A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 62:1569–1585CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Simione FP, Brown EM (eds) (1991) ATCC preservation methods: freezing and freeze-drying. American Type Culture Collection, Rockville, MDGoogle Scholar
  27. 27.
    Nei T, Araki T, Matsusaka T (1969) Freezing injury to aerated and non-aerated cultures of Escherichia coli. In: Nei T (ed) Freezing and drying of microorganisms. University of Tokyo Press, TokyoGoogle Scholar
  28. 28.
    Shafia F, Thompson TL (1964) Calcium ion requirement for proliferation of bacteriophage phi Mu-4. J Bacteriol 88:293–296PubMedPubMedCentralGoogle Scholar
  29. 29.
    Landry EF, Zsigray RM (1980) Effects of calcium on the lytic cycle of Bacillus subtilis phage 41c. J Gen Virol 51:125–135CrossRefPubMedGoogle Scholar
  30. 30.
    Wentworth BB, Romig WR (1968) Recombinants of a defective lysogen of staphylococcal strains. Jpn J Microbiol 12:299–307CrossRefPubMedGoogle Scholar
  31. 31.
    Kingsbury DT, Ordal EJ (1966) Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J Bacteriol 91:1327–1332PubMedPubMedCentralGoogle Scholar
  32. 32.
    Welker NE, Campbell LL (1965) Induction and properties of a temperate bacteriophage from Bacillus stearothermophilus. J Bacteriol 89:175–184PubMedPubMedCentralGoogle Scholar
  33. 33.
    Santos MA, De Lencastre H, Archer LJ (1984) Homology between phages SPP1, 41c, 22a, rho 15 and SF6 of Bacillus subtilis. J Gen Virol 65:2067–2072CrossRefPubMedGoogle Scholar
  34. 34.
    Storms ZJ, Arsenault E, Sauvageau D, Cooper DG (2010) Bacteriophage adsorption efficiency and its effect on amplification. Bioprocess Biosyst Eng 33:823–831CrossRefPubMedGoogle Scholar
  35. 35.
    Fildes P, Kay D (1959) The function of tryptophan in the adsorption of a bacteriophage. Br J Exp Pathol 40:71–79PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202CrossRefPubMedGoogle Scholar
  37. 37.
    Adams MH (1959) Enumeration of bacteriophage particles. In: Adams MH (ed) The bacteriophages. Interscience Publishers Inc., New York, NYGoogle Scholar
  38. 38.
    Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloepper J, Bonilla R (2013) Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ Sci 18:129–139CrossRefGoogle Scholar
  39. 39.
    Fonseca F, Marin M, Morris GJ (2006) Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Appl Environ Microbiol 72:6474–6482CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Małgorzata B. Łobocka
    • 1
    • 2
    Email author
  • Aleksandra Głowacka
    • 1
  • Piotr Golec
    • 3
  1. 1.Department of Microbial BiochemistryInstitute of Biochemistry and Biophysics of the Polish Academy of SciencesWarsawPoland
  2. 2.Faculty of Agriculture and Biology, Autonomous Department of Microbial BiologyWarsaw University of Life Sciences – SGGWWarsawPoland
  3. 3.Laboratory of Molecular Biology (affiliated with the University of Gdańsk)Institute of Biochemistry and Biophysics of the Polish Academy of SciencesGdańskPoland

Personalised recommendations