Interaction of Bacteriophages with Mammalian Cells

  • Zuzanna Kaźmierczak
  • Krystyna DąbrowskaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1693)


Natural bacteriophages (present in the microbiome) and those applied as therapeutic agents may interact with mammalian cells and tissues. Adhesion interactions may define bacteriophage pharmacokinetics and resulting efficiency of bacteriophage agents in therapeutic applications by shaping bacteriophage homing to tissues and organs. Here we propose protocols for testing direct adhesion of bacteriophages or bacteriophage proteins to mammalian cells (in vitro). We further propose an animal model for investigation of accumulation/homing of bacteriophages in tissues (in vivo).

Key words

Adhesion Molecular imaging Bacteriophage labeling Mammalian cells Phage display 



This work was supported by the National Science Centre in Poland, grant UMO-2012/05/E/NZ6/03314 and grant UMO-2015/19/N/NZ4/03609.


  1. 1.
    Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A (2015) The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 47:1007–1012CrossRefPubMedGoogle Scholar
  2. 2.
    Górski A, Dąbrowska K, Hodyra-Stefaniak K, Borysowski J, Międzybrodzki R, Weber-Dąbrowska B (2015) Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 10(2):199–204CrossRefPubMedGoogle Scholar
  3. 3.
    Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Kłopot A, Górski A, Dąbrowska K (2015) Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep 5:14802CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Payne RJ, Phil D, Jansen VA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68(3):225–230CrossRefPubMedGoogle Scholar
  5. 5.
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE (2016) Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 40:258–272CrossRefPubMedGoogle Scholar
  7. 7.
    Ceglarek I, Piotrowicz A, Lecion D, Miernikiewicz P, Owczarek B, Hodyra K, Harhala M, Górski A, Dąbrowska K (2013) A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Sci Rep 3:3220CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kaźmierczak Z, Piotrowicz A, Owczarek B, Hodyra K, Miernikiewicz P, Lecion D, Harhala M, Górski A, Dąbrowska K (2014) Molecular imaging of T4 phage in mammalian tissues and cells. Bacteriophage 4:e28364CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sambrook J, Russell DW (eds) (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York, NYGoogle Scholar
  10. 10.
    Adams M (1957) Bacteriophages. Interscience Publishers INC., New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of Immunology and Experimental TherapyPolish Academy of SciencesWrocławPoland

Personalised recommendations