Advertisement

Protein NMR pp 341-352 | Cite as

Practical Nonuniform Sampling and Non-Fourier Spectral Reconstruction for Multidimensional NMR

  • Mark W. Maciejewski
  • Adam D. Schuyler
  • Jeffrey C. Hoch
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1688)

Abstract

A general approach to accelerating multidimensional NMR experiments via nonuniform sampling and maximum entropy spectral reconstruction was first demonstrated by Laue and colleagues in 1987. Following decades of continual improvements involving dozens of software packages for non-Fourier spectral analysis and many different schemes for nonuniform sampling, we still lack a clear consensus on best practices for sampling or spectral reconstruction, and programs for processing nonuniformly sampled data are not particularly user-friendly. Nevertheless, it is possible to discern conservative and general guidelines for nonuniform sampling and spectral reconstruction. Here, we describe a robust semi-automated workflow that employs these guidelines for simplifying the selection of a sampling schedule and the processing of the resulting nonuniformly sampled multidimensional NMR data. Our approach is based on NMRbox, a shared platform for NMR software that facilitates workflow development and execution, and enables rapid comparison of alternate approaches.

Key words

Nonuniform sampling NMR Multidimensional Maximum entropy reconstruction (MaxEnt) Spectral reconstruction Nus-tool 

Notes

Acknowledgments

We thank Alan S. Stern, Gerard Weatherby, Frank Delaglio, David Rovnyak, and Levi Craft for useful discussions and technical support. Support for NMRbox from the US National Institutes for Health (via grant P41GM111135) is gratefully acknowledged. Support from NIH (via grant R21GM104517) for research on MaxEnt reconstruction is also gratefully acknowledged.

References

  1. 1.
    Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New YorkGoogle Scholar
  2. 2.
    Jeener J (1971) Oral presentation. Ampere International Summer School, Basko Polje, YugoslaviaGoogle Scholar
  3. 3.
    Barna JCJ, Laue ED (1987) Conventional and exponential sampling for 2D NMR experiments with application to a 2D NMR spectrum of a protein. J Magn Reson 75:384–389Google Scholar
  4. 4.
    Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77Google Scholar
  5. 5.
    Skilling J, Bryan RK (1984) Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc 211:111–124CrossRefGoogle Scholar
  6. 6.
    Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52:1289–1306CrossRefGoogle Scholar
  7. 7.
    Mobli M, Hoch JC (2014) Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Reson Spectrosc 83C:21–41. doi: 10.1016/j.pnmrs.2014.09.002 CrossRefGoogle Scholar
  8. 8.
    Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC (2012) Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys 14:10835–10843. doi: 10.1039/c2cp40174f CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hyberts SG, Arthanari H, Wagner G (2012) Applications of non-uniform sampling and processing. Top Curr Chem 316:125–148. doi: 10.1007/128_2011_187 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kazimierczuk K, Orekhov V (2015) Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn Reson Chem 53:921–926. doi: 10.1002/mrc.4284 CrossRefPubMedGoogle Scholar
  11. 11.
    Donoho DL, Tanner J (2009) Observed universality of phase transitions in high-dimensional geometry,with implications for modern data analysis and signal processing. Phil Trans R Soc 367:4273–4293CrossRefGoogle Scholar
  12. 12.
    Stern AS, Hoch JC (2015) A new approach to compressed sensing for NMR. Magn Reson Chem 53:908–912. doi: 10.1002/mrc.4287 CrossRefPubMedGoogle Scholar
  13. 13.
    Stern AS, Donoho DL, Hoch JC (2007) NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J Magn Reson 188:295–300CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMedGoogle Scholar
  15. 15.
    Schuyler AD, Maciejewski MW, Stern AS, Hoch JC (2013) Formalism for hypercomplex multidimensional NMR employing partial-component subsampling. J Magn Reson 227:20–24. doi: 10.1016/j.jmr.2012.11.019 CrossRefPubMedGoogle Scholar
  16. 16.
    Palmer MR, Wenrich BR, Stahlfeld P, Rovnyak D (2014) Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. J Biomol NMR 58:303–314. doi: 10.1007/s10858-014-9823-5 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoch JC, Maciejewski MW, Filipovic B (2008) Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 193:317–320CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Monajemi H (2016) Phase transitions in deterministic compressed sensing, with application to magnetic resonance spectroscopy. Stanford University, Stanford, CAGoogle Scholar
  19. 19.
    Schuyler AD, Maciejewski MW, Arthanari H, Hoch JC (2011) Knowledge-based nonuniform sampling in multidimensional NMR. J Biomol NMR 50:247–262CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Paramasivam S, Suiter CL, Hou GJ, Sun SJ, Palmer M, Hoch JC, Rovnyak D, Polenova T (2012) Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 116:7416–7427. doi: 10.1021/Jp3032786 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rovnyak D, Sarcone M, Jiang Z (2011) Sensitivity enhancement for maximally resolved two-dimensional NMR by nonuniform sampling. Magn Reson Chem 49:483–491CrossRefPubMedGoogle Scholar
  22. 22.
    Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132:2145–2147. doi: 10.1021/ja908004w CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson gap scheduling. J Biomol NMR 52:315–327. doi: 10.1007/s10858-012-9611-z CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Worley B, Powers R (2015) Deterministic multidimensional nonuniform gap sampling. J Magn Reson 261:19–26. doi: 10.1016/j.jmr.2015.09.016 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fenwick M, Weatherby G, Vyas J, et al. CONNJUR Workflow Builder: A software integration environment for spectral reconstruction. Journal of Biomolecular NMR. 2015;62(3):313–326. doi: 10.1007/s10858-015-9946-3
  26. 26.
    Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G (2007) Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefPubMedGoogle Scholar
  28. 28.
    Mobli M, Maciejewski MW, Gryk MP, Hoch JC (2007) An automated tool for maximum entropy reconstruction of biomolecular NMR spectra. Nat Methods 4:3–4CrossRefGoogle Scholar
  29. 29.
    Mobli M, Maciejewski MW, Gryk MP, Hoch JC (2007) Automatic maximum entropy spectral reconstruction in NMR. J Biomol NMR 39:133–139CrossRefPubMedGoogle Scholar
  30. 30.
    Schmieder P, Stern AS, Wagner G, Hoch JC (1997) Quantification of maximum entropy spectrum reconstructions. J Magn Reson 125:332–339CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Mark W. Maciejewski
    • 1
  • Adam D. Schuyler
    • 1
  • Jeffrey C. Hoch
    • 1
  1. 1.Department of Molecular Biology and BiophysicsUConn HealthFarmingtonUSA

Personalised recommendations