Analysis of Lipids and Lipid Rafts in Borrelia

  • Alvaro ToledoEmail author
  • Zhen Huang
  • Jorge L. Benach
  • Erwin London
Part of the Methods in Molecular Biology book series (MIMB, volume 1690)


Lipid rafts are membrane microdomains that are involved in cellular processes such as protein trafficking and signaling processes, and which play a fundamental role in membrane fluidity and budding. The lipid composition of the membrane and the biochemical characteristics of the lipids found within rafts define the ability of cells to form microdomains and compartmentalize the membrane. In this chapter, we describe the biophysical, biochemical, and molecular approaches used to define and characterize lipid rafts in the Lyme disease agent, Borrelia burgdorferi.

Key words

Lipid rafts Borrelia Lyme disease Lipids 



This work was supported by NIH grants 1R21AI125806 to AT, GM 099892 to EL and RO1-AI-027044 to JLB.


  1. 1.
    Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease-a tick-borne spirochetosis? Science 216(4552):1317–1319CrossRefPubMedGoogle Scholar
  2. 2.
    Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF, Cameron DJ, Ziegler JL, Barbour AG, Burgdorfer W, Edelman R, Kaslow RA (1983) Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308(13):740–742. doi: 10.1056/NEJM198303313081302 CrossRefPubMedGoogle Scholar
  3. 3.
    Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE (1983) The spirochetal etiology of Lyme disease. N Engl J Med 308(13):733–740. doi: 10.1056/NEJM198303313081301 CrossRefPubMedGoogle Scholar
  4. 4.
    Belisle JT, Brandt ME, Radolf JD, Norgard MV (1994) Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176(8):2151–2157CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jones JD, Bourell KW, Norgard MV, Radolf JD (1995) Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63(7):2424–2434PubMedPubMedCentralGoogle Scholar
  6. 6.
    Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV (1995) Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63(6):2154–2163PubMedPubMedCentralGoogle Scholar
  7. 7.
    Schroder NW, Schombel U, Heine H, Gobel UB, Zahringer U, Schumann RR (2003) Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278(36):33645–33653. doi: 10.1074/jbc.M305799200 CrossRefPubMedGoogle Scholar
  8. 8.
    Stubs G, Fingerle V, Wilske B, Gobel UB, Zahringer U, Schumann RR, Schroder NW (2009) Acylated cholesteryl galactosides are specific antigens of borrelia causing lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284(20):13326–13334. doi: 10.1074/jbc.M809575200 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stubs G, Fingerle V, Zahringer U, Schumann RR, Rademann J, Schroder NW (2011) Acylated cholesteryl galactosides are ubiquitous glycolipid antigens among Borrelia burgdorferi sensu lato. FEMS Immunol Med Microbiol 63(1):140–143. doi: 10.1111/j.1574-695X.2011.00827.x CrossRefPubMedGoogle Scholar
  10. 10.
    Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100(13):7913–7918. doi: 10.1073/pnas.1232451100 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hossain H, Wellensiek HJ, Geyer R, Lochnit G (2001) Structural analysis of glycolipids from Borrelia burgdorferi. Biochimie 83(7):683–692CrossRefPubMedGoogle Scholar
  12. 12.
    Hirai Y, Haque M, Yoshida T, Yokota K, Yasuda T, Oguma K (1995) Unique cholesteryl glucosides in helicobacter pylori: composition and structural analysis. J Bacteriol 177(18):5327–5333CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Trott DJ, Alt DP, Zuerner RL, Wannemuehler MJ, Stanton TB (2001) The search for Brachyspira outer membrane proteins that interact with the host. Anim Health Res Rev 2(1):19–30. doi:S1466252301000020 [pii]PubMedGoogle Scholar
  14. 14.
    Smith PF (1971) Biosynthesis of cholesteryl glucoside by mycoplasma gallinarum. J Bacteriol 108(3):986–991PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin M, Rikihisa Y (2003) Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71(9):5324–5331CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9(5):e1003353. doi: 10.1371/journal.ppat.1003353 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Alvaro Toledo
    • 1
    Email author
  • Zhen Huang
    • 3
  • Jorge L. Benach
    • 2
  • Erwin London
    • 3
  1. 1.Department of EntomologyRutgers UniversityNew BrunswickUSA
  2. 2.Department of Molecular Genetics and MicrobiologyStony Brook UniversityStony BrookUSA
  3. 3.Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA

Personalised recommendations