Study Quiescence Heterogeneity by Coupling Single-Cell Measurements and Computer Modeling

  • Jungeun Sarah Kwon
  • Xia Wang
  • Guang YaoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1686)


Single-cell measurements combined with mathematical modeling and computer simulations are powerful tools for understanding and exploring dynamical behaviors of gene networks and cellular functions that they control. Here, we describe experimental and computational methods to study cellular quiescence and its heterogeneity at the single-cell level.

Key words

Cell cycle Quiescence Heterogeneity Fluorescent protein reporter DNA content Click-iT EdU assay Ordinary differential equation (ODE) Deterministic simulation Stochastic simulation 



This work was supported by grants from the NSF (DMS-1463137 and DMS-1418172, to G.Y.), NIH (GM-084905, a T32 fellowship to J.S.K) and the NSF of China and Anhui Province (Grant No. 31500676 and 1508085SQC202, to X.W.).


  1. 1.
    Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83. doi: 10.1371/journal.pbio.0040083 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yao G (2014) Modelling mammalian cellular quiescence. Interface Focus 4:20130074CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Augenlicht LH, Baserga R (1974) Changes in the G0 state of WI-38 fibroblasts at different times after confluence. Exp Cell Res 89(2):255–262CrossRefPubMedGoogle Scholar
  4. 4.
    Owen TA, Soprano DR, Soprano KJ (1989) Analysis of the growth factor requirements for stimulation of WI-38 cells after extended periods of density-dependent growth arrest. J Cell Physiol 139(2):424–431. doi: 10.1002/jcp.1041390227 CrossRefPubMedGoogle Scholar
  5. 5.
    Yanez I, O'Farrell M (1989) Variation in the length of the lag phase following serum restimulation of mouse 3T3 cells. Cell Biol Int Rep 13(5):453–462CrossRefPubMedGoogle Scholar
  6. 6.
    Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(alert). Nature 510(7505):393–396. doi: 10.1038/nature13255. nature13255 [pii]PubMedPubMedCentralGoogle Scholar
  7. 7.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340. doi: 10.1016/j.stem.2015.07.002. S1934-5909(15)00301-X [pii]CrossRefPubMedGoogle Scholar
  8. 8.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  9. 9.
    Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10(4):476–482CrossRefPubMedGoogle Scholar
  10. 10.
    Dong P, Maddali MV, Srimani JK, Thelot F, Nevins JR, Mathey-Prevot B, You L (2014) Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control. Nat Commun 5:4750CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stewart-Ornstein J, Lahav G (2016) Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit. Cell Rep 14(7):1800–1811. doi: 10.1016/j.celrep.2016.01.045. S2211-1247(16)30023-7 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wong JV, Yao G, Nevins JR, You L (2011) Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. Mol Cell 41(3):275–285. doi: 10.1016/j.molcel.2011.01.014. S1097-2765(11)00041-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wong JV, Yao G, Nevins JR, You LC (2011) Using noisy gene expression mediated by engineered adenovirus to probe signaling dynamics in mammalian cells. Methods Enzymol 497:221–237. doi: 10.1016/B978-0-12-385075-1.00010-X CrossRefPubMedGoogle Scholar
  14. 14.
    Yao G, Tan C, West M, Nevins JR, You L (2011) Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 7:485. doi: 10.1038/msb.2011.19. msb201119 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523–532. doi: 10.1038/nrc3081. nrc3081 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335CrossRefPubMedGoogle Scholar
  17. 17.
    Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579CrossRefPubMedGoogle Scholar
  18. 18.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074. doi: 10.1093/bioinformatics/btl485. btl485 [pii]CrossRefPubMedGoogle Scholar
  19. 19.
    McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94(3):814–819CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97(5):2075–2080. doi: 10.1073/pnas.040411297 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Logan J, Nicolas JC, Topp WC, Girard M, Shenk T, Levine AJ (1981) Transformation by adenovirus early region 2A temperature-sensitive mutants and their revertants. Virology 115(2):419–422CrossRefPubMedGoogle Scholar
  22. 22.
    Lee T, Yao G, Bennett DC, Nevins JR, You L (2010) Stochastic E2F activation and reconciliation of phenomenological cell-cycle models. PLoS Biol 8(9):e1000488. doi: 10.1371/journal.pbio.1000488 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Srimani JK, Yao G, Neu J, Tanouchi Y, Lee TJ, You L (2014) Linear population allocation by bistable switches in response to transient stimulation. PLoS One 9(8):e105408. doi: 10.1371/journal.pone.0105408. PONE-D-14-22009 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594. doi: 10.1038/nbt957 CrossRefPubMedGoogle Scholar
  25. 25.
    Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306. doi: 10.1063/1.481811 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations