Single EDL Myofiber Isolation for Analyses of Quiescent and Activated Muscle Stem Cells

  • Caroline E. Brun
  • Yu Xin Wang
  • Michael A. RudnickiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1686)


Adult satellite cells are quiescent, but are poised for activation in response to exercise, injury, or disease allowing adult muscle growth or repair. Once activated, satellite cells proliferate extensively to produce enough myogenic progenitors in order to regenerate the muscles. In order to self-renew, a subset of activated satellite cells can resist the myogenic differentiation and return to quiescence to replenish the satellite cell pool. These cellular processes that normally occur during skeletal muscle regeneration can be recapitulated ex vivo using isolated and cultured myofibers. Here, we describe a protocol to isolate single myofibers from the extensor digitorum longus muscle. Moreover, we detail experimental conditions for analyzing satellite cells in quiescence and progression through the myogenic lineage.

Key words

Skeletal muscle Extensor digitorum longus Satellite cells Muscle stem cells Myofiber isolation Quiescence Proliferation Differentiation Cell culture Immunostaining Pax7 Myod 



C.E.B. is supported by a Postdoctoral Fellowship from the Ontario Institute for Regenerative Medicine. Y.X.W. is supported by fellowships from the Queen Elizabeth II Graduate Scholarships in Science and Technology and the CIHR. M.A.R. holds a Canada Research Chair in Molecular Genetics. These studies were carried out with support of grants to M.A.R. from the US National Institutes for Health [R01AR044031], the Canadian Institutes for Health Research [MOP-12080, MOP-81288, FDN-148387], E-Rare-2: Canadian Institutes of Health Research/Muscular Dystrophy Canada [ERA-132935], the Muscular Dystrophy Association, and the Stem Cell Network.


  1. 1.
    Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. doi: 10.1002/cphy.c140068 CrossRefPubMedGoogle Scholar
  2. 2.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786CrossRefPubMedGoogle Scholar
  4. 4.
    Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181. doi: 10.1016/B978-0-12-416022-4.00006-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357. doi: 10.1083/jcb.200312007 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283. doi: 10.1006/dbio.1997.8721 CrossRefPubMedGoogle Scholar
  7. 7.
    Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331. doi: 10.1101/sqb.2008.73.064 CrossRefPubMedGoogle Scholar
  8. 8.
    Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31(10):773–779. doi: 10.1007/BF02634119 CrossRefPubMedGoogle Scholar
  9. 9.
    Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115(1):129–139CrossRefPubMedGoogle Scholar
  10. 10.
    Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31. doi: 10.1016/j.stem.2007.12.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Pasut A, Jones AE, Rudnicki MA (2013) Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp 73:e50074. doi: 10.3791/50074 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Caroline E. Brun
    • 1
  • Yu Xin Wang
    • 1
  • Michael A. Rudnicki
    • 1
    Email author
  1. 1.Regenerative Medicine Program, Department of Cellular and Molecular Medicine, Faculty of Medicine, Sprott Center for Stem Cell Research, Ottawa Hospital Research InstituteUniversity of OttawaOttawaCanada

Personalised recommendations