Skip to main content

YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations

  • Protocol
  • First Online:
Book cover Protein Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

In biocatalysis, structural knowledge regarding an enzyme and its substrate interactions complements and guides experimental investigations. Structural knowledge regarding an enzyme or a biocatalytic reaction system can be generated through computational techniques, such as homology- or molecular modeling. For this type of computational work, a computer program developed for molecular modeling of proteins is required. Here, we describe the use of the program YASARA Structure. Protocols for two specific biocatalytic applications, including both homology modeling and molecular modeling such as energy minimization, molecular docking simulations and molecular dynamics simulations, are shown. The applications are chosen to give realistic examples showing how structural knowledge through homology and molecular modeling is used to guide biocatalytic investigations and protein engineering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Faber K (2011) Biotransformations in organic chemistry: a textbook, 6th edn. Springer, Heidelberg

    Book  Google Scholar 

  2. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647–653

    Article  CAS  PubMed  Google Scholar 

  3. Widmann M, Pleiss J, Samland AK (2012) Computational tools for rational protein engineering of aldolases. Comput Struct Biotechnol J 2:e201209016

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen R (2001) Enzyme engineering: rational redesign versus directed evolution. Trends Biotechnol 19:13–15

    Article  CAS  PubMed  Google Scholar 

  5. Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational redesign. Curr Opin Biotechnol 16:378–384

    Article  CAS  PubMed  Google Scholar 

  6. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573

    Article  CAS  PubMed  Google Scholar 

  7. Otten LG, Hollmann F, Arends IWCE (2009) Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol 28:46–54

    Article  PubMed  Google Scholar 

  8. Lutz S (2010) Beyond directed evolution - semi-rational protein engineering and design. Curr Opin Biotechnol 6:734–743

    Article  Google Scholar 

  9. Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200

    Article  CAS  PubMed  Google Scholar 

  10. Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  11. Steiner K, Schwab H (2012) Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J 2:e201209010

    Article  PubMed  PubMed Central  Google Scholar 

  12. The Protein Data Bank http://www.rcsb.org/pdb/home/home.do

  13. Bergman HM, Henrick K, Nakamura H (2003) Announcing the world-wide Protein Data Bank. Nat Struct Biol 10:980

    Article  Google Scholar 

  14. Epstain CJ, Goldberger RF, Anfinsen CB (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harb Symp Quant Biol 28:439–449

    Article  Google Scholar 

  15. Epstain CJ (1964) Relation of protein evolution to tertiary structure. Nature 203:1350–1352

    Article  Google Scholar 

  16. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–836

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68

    Article  CAS  PubMed  Google Scholar 

  18. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  CAS  PubMed  Google Scholar 

  19. Krieger E, Nabuurs SB, Vriend G (2003) Homology modeling. In: Bourne PE, Weissig H (eds) Structural bioinformatics. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  20. Tramontano A (2006) Protein structure prediction. Concepts and applications. Wiley-VCH, Weinheim

    Google Scholar 

  21. Venselaar H, Joosten RP, Vroling B et al (2010) Homology modeling and spectroscopy, a never ending love story. Eur Biophys J 39:551–563

    Article  PubMed  Google Scholar 

  22. Leach AR (2001) Molecular modelling – principles and applications, 2nd edn. Dorset Press, Dorchester

    Google Scholar 

  23. Information regarding the YASARA program products www.yasara.org/products.html

  24. Krieger E, Vriend G (2014) YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. The NCBI GenBank: www.ncbi.nlm.nih.gov

  26. Benson DA, Cavanaugh M, Clark K et al (2013) GeneBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  PubMed  Google Scholar 

  27. Pre-made script in YASARA for homology modeling simulations http://www.yasara.org/hm_build.mcr

  28. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hooft RW, Vriend G, Sander C et al (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  30. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  31. Konagurthu AS, Whisstock JC, Stuckey PJ et al (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574

    Article  CAS  PubMed  Google Scholar 

  32. Denesyuk AI, Denessiouk KA, Korpela T et al (2002) Functional attributes of the phosphate group binding cup of pyridoxal phosphate-dependent enzymes. J Mol Biol 316:155–172

    Article  CAS  PubMed  Google Scholar 

  33. Sayer C, Isupov MN, Westlake A et al (2013) Structural studies with Pseudomonas and Chromobacterium [omega]-aminotransferases provide insights into their differing substrate specificity. Acta Crystallogr Sect D 69:564–576

    Article  CAS  Google Scholar 

  34. Baugh L, Phan I, Begley DW et al (2015) Increasing the structural coverage of tuberculosis drug targets. Tuberculosis 95:142–148

    Article  CAS  PubMed  Google Scholar 

  35. Silverman RB (2002) The organic chemistry of enzyme-catalysed reactions, 2nd edn. Academic Press, London, pp 388–390

    Google Scholar 

  36. Pre-made script in YASARA written by Elmar Krieger for molecular docking simulations http://www.yasara.org/dock_run.mcr

  37. Pre-made script in YASARA written by Elmar Krieger to visualize (play up) a molecular docking simulation http://www.yasara.org/dock_play.mcr

  38. Svedendahl M, Branneby C, Lindberg L et al (2010) Reversed enantiopreference of an ω-transaminase by a single-point mutation. ChemCatChem 2:976–980

    Article  CAS  Google Scholar 

  39. Svedendahl Humble M, Engelmark Cassimjee K, Abedi V et al (2012) Key amino acid residues for reversed or improved enantiospecificity of an ω-transaminase. ChemCatChem 4:1167–1172

    Article  CAS  Google Scholar 

  40. Steffen-Munsberg F, Vickers C, Thontowi A et al (2013) Connecting unexplored protein crystal structures to enzymatic function. ChemCatChem 5:150–153

    Article  CAS  Google Scholar 

  41. Steffen-Munsberg F, Vickers C, Thontowi A et al (2013) Revealing the structural basis of promiscuous amine transaminase activity. ChemCatChem 5:154–157

    Article  CAS  Google Scholar 

  42. Pre-made script in YASARA written by Elmar Krieger for molecular dynamics simulation http://www.yasara.org/md_run.mcr

  43. Pre-made script in YASARA written by Elmar Krieger to visualize (play up) a molecular dynamics simulation http://www.yasara.org/md_play.mcr

Download references

Acknowledgment

This work was funded by KTH Royal Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Svedendahl Humble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Land, H., Humble, M.S. (2018). YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics