Advertisement

Ion Binding to Transport Proteins using Isothermal Titration Calorimetry

  • Shian Liu
  • Steve W. Lockless
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1684)

Abstract

Isothermal titration calorimetry (ITC) is an emerging, label-free technology used to measure ligand binding to membrane proteins. This technology utilizes a titration calorimeter to measure the heat exchange upon ligands binding to proteins, the magnitude of which is based on the overall enthalpy of the reaction. In this protocol, the steps we and others use to measure ion binding to ion transport proteins are described.

Key words

Isothermal titration calorimetry Channel Transporter Ion binding Equilibrium 

Notes

Acknowledgment

This work was supported by The Welch Foundation grant A-1742 and Texas A&M Startup Funds to S.W.L.

Supplementary material

419924_1_En_22_MOESM1_ESM.xlsx (27 kb)
Table S1 (XLSX 26 kb)

References

  1. 1.
    Zhou Y, MacKinnon R (2003) The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333(5):965–975CrossRefPubMedGoogle Scholar
  2. 2.
    Alam A, Jiang Y (2009) Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 16(1):35–41CrossRefPubMedGoogle Scholar
  3. 3.
    Ye S, Li Y, Jiang Y (2010) Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Nat Struct Mol Biol 17(8):1019–1023CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sauer DB et al (2013) Sodium and potassium competition in potassium-selective and non-selective channels. Nat Commun 4:2721CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bhate MP et al (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401(2):155–166CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ader C et al (2009) Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity. EMBO J 28(18):2825–2834CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krishnan MN et al (2005) Functional role and affinity of inorganic cations in stabilizing the tetrameric structure of the KcsA K+ channel. J Gen Physiol 126(3):271–283CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Renart ML et al (2006) Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J Biol Chem 281(40):29905–29915CrossRefPubMedGoogle Scholar
  9. 9.
    Neyton J, Miller C (1988) Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 92(5):549–567CrossRefPubMedGoogle Scholar
  10. 10.
    Williams M, Daviter T (eds) (2013) Protein-ligand interactions. Humana Press, Totowa, NJGoogle Scholar
  11. 11.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry. W.H. Freeman and Company, New York, NYGoogle Scholar
  12. 12.
    Lockless SW, Zhou M, MacKinnon R (2007) Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol 5(5):e121CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu S, Bian X, Lockless SW (2012) Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. J Gen Physiol 140(6):671–679CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu S, Lockless SW (2013) Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels. Nat Commun 4:2746PubMedGoogle Scholar
  15. 15.
    Picollo A et al (2009) Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat Struct Mol Biol 16(12):1294–1301CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lim HH, Stockbridge RB, Miller C (2013) Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter. Nat Chem Biol 9(11):721–725CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Picollo A et al (2012) Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H(+)/Cl(-) exchanger. Nat Struct Mol Biol 19(5):525–531. S1CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brammer AE, Stockbridge RB, Miller C (2014) F-/Cl- selectivity in CLCF-type F-/H+ antiporters. J Gen Physiol 144(2):129–136CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reyes N, Oh S, Boudker O (2013) Binding thermodynamics of a glutamate transporter homolog. Nat Struct Mol Biol 20(5):634–640CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ehrnstorfer IA et al (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 21(11):990–996CrossRefPubMedGoogle Scholar
  21. 21.
    Piscitelli CL, Krishnamurthy H, Gouaux E (2010) Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 468(7327):1129–1132CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wiseman T et al (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179(1):131–137CrossRefPubMedGoogle Scholar
  23. 23.
    Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277(2):260–266CrossRefPubMedGoogle Scholar
  24. 24.
    Malvern (2014) MicroCal iTC200 system user manual. Malvern, MalvernGoogle Scholar
  25. 25.
    Freiburger LA, Auclair K, Mittermaier AK (2009) Elucidating protein binding mechanisms by variable-c ITC. ChemBioChem 10(18):2871–2873CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Freire E, Schon A, Velazquez-Campoy A (2009) Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol 455:127–155CrossRefPubMedGoogle Scholar
  27. 27.
    Heerklotz HH, Binder H, Epand RM (1999) A “release” protocol for isothermal titration calorimetry. Biophys J 76(5):2606–2613CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866CrossRefPubMedGoogle Scholar
  29. 29.
    Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373(2):395–397CrossRefPubMedGoogle Scholar
  30. 30.
    Tellinghuisen J (2016) Analysis of multitemperature isothermal titration calorimetry data at very low c: global beats van’t Hoff. Anal Biochem 513:43–46CrossRefPubMedGoogle Scholar
  31. 31.
    Mizoue LS, Tellinghuisen J (2004) The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal Biochem 326(1):125–127CrossRefPubMedGoogle Scholar
  32. 32.
    Egawa T et al (2007) Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters. Anal Chem 79(7):2972–2978CrossRefPubMedGoogle Scholar
  33. 33.
    Burnouf D et al (2012) kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J Am Chem Soc 134(1):559–565CrossRefPubMedGoogle Scholar
  34. 34.
    Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1(1):186–191CrossRefPubMedGoogle Scholar
  35. 35.
    Bian X, Lockless SW (2016) Preparation to minimize buffer mismatch in isothermal titration calorimetry experiments. Anal Chem 88(10):5549–5553CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA
  2. 2.Janelia Research CampusHoward Hughes Medical InstituteAshburnUSA

Personalised recommendations