Analysis of Individual Extracellular Vesicles by Flow Cytometry

  • John P. NolanEmail author
  • Erika Duggan
Part of the Methods in Molecular Biology book series (MIMB, volume 1678)


Extracellular vesicles (EVs) are released by cells and can be found in cell culture supernatants and biofluids. EVs carry proteins, nucleic acids, and other cellular components and can deliver these to nearby or distant cells, making EVs of interest as both disease biomarkers and therapeutic targets. EVs in biofluids are heterogeneous, coming from different cell types and from different sources with the cell, which limits the usefulness of bulk EV analysis methods that report the average features of all EVs present. Single-particle measurements such as flow cytometry would be preferred, but the small size and low abundance of surface antigens challenges conventional flow cytometry approaches, leading to the development of vesicle-specific assays and experimental design. Among the key issues that have emerged are: (a) judicious choice of detection (triggering) approach; (b) appropriate control experiments to confirm the vesicular nature of the detected events and the contribution of coincidence (aka swarm detection); and (c) the importance of fluorescence calibration to allow data to be compared over time and between laboratories. We illustrate these issues in the context of fluorescence-triggered Vesicle Flow Cytometry (VFC), a general approach to the quantitative measurement of EV number, size, and surface marker expression.

Key words

Exosome Microvesicle Calibration Standardization 



Supported by: UH2TR000931 from the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director.


  1. 1.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of Exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1)Google Scholar
  2. 2.
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. doi: 10.1093/biosci/biv084 CrossRefGoogle Scholar
  3. 3.
    Nolan JP (2015) Flow Cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.11–13.14.16. doi: 10.1002/0471142956.cy1314s73 Google Scholar
  4. 4.
    van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12(7):1182–1192. doi: 10.1111/jth.12602 CrossRefGoogle Scholar
  5. 5.
    Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, the ISSCW (2013) Standardization of pre-analytical variables in plasma microparticle determination: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost 11(6):1190–1193. doi: 10.1111/jth.12207 CrossRefGoogle Scholar
  6. 6.
    Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J, Dignat-george F (2012) Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 10(3):437–446CrossRefGoogle Scholar
  7. 7.
    Lacroix R, Robert S, Poncelet P, Kasthuri R, Key N, Dignat-George F (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost 8(11):2571–2574CrossRefGoogle Scholar
  8. 8.
    Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3(1.) 3:10.3402/jev.v3403.26913). doi: 10.3402/jev.v3.26913
  9. 9.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles, 2.  10.3402/jev.v3402i3400.20360. doi: 10.3402/jev.v2i0.20360
  10. 10.
    Böing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3:23430CrossRefGoogle Scholar
  11. 11.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols Cell Biol Unit 3.22. 21-23.22. 29Google Scholar
  12. 12.
    Linares R, Tan S, Gounou C, Arraud N, Brisson AR (2015) High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 4:29509CrossRefGoogle Scholar
  13. 13.
    Chandler W, Yeung W, Tait J (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9(6):1216–1224CrossRefGoogle Scholar
  14. 14.
    van der Pol E, Coumans FAW, Sturk A, Nieuwland R, van Leeuwen TG (2014) Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 14(11):6195–6201. doi: 10.1021/nl503371p CrossRefGoogle Scholar
  15. 15.
    Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-george F (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 7(1):190–197CrossRefGoogle Scholar
  16. 16.
    Cointe S, Judicone C, Robert S, Mooberry M, Poncelet P, Wauben M, Nieuwland R, Key N, Dignat-George F, Lacroix R (2016) Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost 15(1):187–193CrossRefGoogle Scholar
  17. 17.
    Arraud N, Gounou C, Turpin D, Brisson AR (2016) Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 89(2):184–195. doi: 10.1002/cyto.a.22669 CrossRefGoogle Scholar
  18. 18.
    Kormelink TG, Arkesteijn GJA, Nauwelaers FA, van den Engh G, Nolte-'t Hoen ENM, Wauben MHM (2016) Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A 89(2):135–147. doi: 10.1002/cyto.a.22644 CrossRefGoogle Scholar
  19. 19.
    Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR, Narayanan PK, Nolan JP (2016) High sensitivity flow cytometry of membrane vesicles. Cytometry A 89(2):196–206. doi: 10.1002/cyto.a.22787 CrossRefGoogle Scholar
  20. 20.
    van der Vlist EJ, Nolte EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7(7):1311–1326CrossRefGoogle Scholar
  21. 21.
    Akers JC, Ramakrishnan V, Nolan JP, Duggan E, Fu C-C, Hochberg FH, Chen CC, Carter BS (2016) Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One 11(2):e0149866CrossRefGoogle Scholar
  22. 22.
    Brooks MB, Turk JR, Guerrero A, Narayanan PK, Nolan JP, Besteman EG, Wilson DW, Thomas RA, Fishman CE, Thompson KL, Eliinger-Ziegelbauer H, Pierson JB, Paulman A, Chiang AY, Schultze AE (2016) Non-lethal endotoxin injection: a rat model for new biomarkers of hypercoagulability. PLoS One 12(1):e0169976CrossRefGoogle Scholar
  23. 23.
    Van Der Pol E, Hoekstra A, Sturk A, Otto C, Van Leeuwen T, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8(12):2596–2607CrossRefGoogle Scholar
  24. 24.
    Wang L, Gaigalas AK, Abbasi F, Marti GE, Vogt RF, Schwartz A (2002) Quantitating fluorescence intensity from fluorophores: practical use of MESF values. J Res-Natl Inst Stand Technol 107(4):339–354CrossRefGoogle Scholar
  25. 25.
    Hoffman RA, Wang L, Bigos M, Nolan JP (2012) NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads. Cytometry A 81(9):785–796CrossRefGoogle Scholar
  26. 26.
    Wang L, Gaigalas AK, Marti G, Abbasi F, Hoffman RA (2008) Toward quantitative fluorescence measurements with multicolor flow cytometry. Cytometry A 73(4):279–288CrossRefGoogle Scholar
  27. 27.
    Nolan JP, Chambers JD, Sklar LA (1998) Cytometric approaches to the study of receptors. Phagocyte function: a guide for research and clinical evaluation. Wiley-Liss, New York, pp 19–45Google Scholar
  28. 28.
    Woods TA, Graves SW, Nolan JP (2005) Microsphere Surface Protein Determination Using Flow Cytometry. Current Protocols in Cytometry: Unit13.12. 11-13.12. 13Google Scholar
  29. 29.
    Coumans FAW, van der Pol E, Böing AN, Hajji N, Sturk G, van Leeuwen TG, Nieuwland R (2014) Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 3:25922CrossRefGoogle Scholar
  30. 30.
    Valkonen S, van der Pol E, Böing A, Yuana Y, Yliperttula M, Nieuwland R, Laitinen S, Siljander P (2017) Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci 98:4–16CrossRefGoogle Scholar
  31. 31.
    Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, Furlong J, Gasparetto M, Goldberg M, Goralczyk EM (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73(10):926–930CrossRefGoogle Scholar
  32. 32.
    Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, Bertier L (2017) EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 14(3):228–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Scintillon InstituteSan DiegoUSA

Personalised recommendations