Advertisement

Overview of the Wheat Genetic Transformation and Breeding Status in China

  • Jiapeng Han
  • Xiaofen Yu
  • Junli Chang
  • Guangxiao Yang
  • Guangyuan HeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1679)

Abstract

In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.

Key words

Wheat Genetic transformation Breeding End-use quality Stress tolerance 

Notes

Acknowledgment

The data were provided by Fan Zhang, Fu Shi, Jie Xiao, Qiuhui Wei, Rui Hu, Ruibin Wang, Yaqiong Wang, Yan Wang, Yang Zhang, and Yuan He, and we thank Zhiming Xiao for critically reading the whole manuscript.

This work was supported by the National Genetically Modified New Varieties of Major Projects of China (2016ZX08010004-004).

References

  1. 1.
    Balkovic J, van der Velde M, Skalsky R, Xiong W, Folberth C, Khabarov N et al (2014) Global wheat production potentials and management flexibility under the representative concentration pathways. Glob Planet Chang 122:107–121CrossRefGoogle Scholar
  2. 2.
    Qin XL, Zhang FX, Liu C, Yu H, Cao BG, Tian SQ et al (2015) Wheat yield improvements in China: past trends and future directions. Field Crop Res 177:117–124CrossRefGoogle Scholar
  3. 3.
    He ZH, Xia XC, Chen XM, Zhuang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agron Sin 37(2):202–215. (in Chinese with English abstract)CrossRefGoogle Scholar
  4. 4.
    Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674CrossRefGoogle Scholar
  5. 5.
    Wang LL, Song GY, Zhang J, Fu RZ, Ma JS, Xu Z et al (1993) Study on introduction of exogenous genes into the wheat embryo by using laser microbeam and acquisition of the transgenic plants. Acta Laser Biol Sin 2(2):278. (in Chinese with English abstract)Google Scholar
  6. 6.
    Zhao TY, Wang GY, Xie YJ (1994) Delivery of GUS gene into apical meristems of yong maize and wheat plantlets by particle bombardment. J Agric Biotechnol 2(2):93–94Google Scholar
  7. 7.
    He Y, Wang Q, Zeng J, Sun T, Yang GX, He GY (2015) Current status and trends of wheat genetic transformation studies in China. J Integr Agric 14(3):438–452CrossRefGoogle Scholar
  8. 8.
    Ye XG, Chen M, Du LP, Xu HJ (2011) Description and evaluation of transformation approaches used in wheat. Hereditas (Beijing) 33(5):422–430. (in Chinese with English abstract)CrossRefGoogle Scholar
  9. 9.
    He X, Qu BY, Li WJ, Zhao XQ, Teng W, Ma WY et al (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169(3):1991–2005PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang ZY, Liu X, Wang XD, Zhou MP, Zhou XY, Ye XG et al (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol 196(4):1155–1170PubMedCrossRefGoogle Scholar
  11. 11.
    Ma FY, Li M, Yu LL, Li Y, Liu YY, Li TT et al (2013) Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties. Mol Breed 32(4):853–865PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liang H, Tang SX, Zhang C, Zhao TH, Li LC, Ouyang JW et al (1999) Studies of improving the frequency of wheat transformation by biolistic bombardment. Acta Genet Sin 26(6):643–648. (in Chinese with English abstract)PubMedGoogle Scholar
  13. 13.
    Zhao LS, Liu LX, Wang J, Guo HJ, Zhao SR, Zheng QC et al (2006) A comparative study on the tissue culture and transformation efficiency of different explant in wheat (Triticum aestivum L.) J Triticeae Crops 26(1):26–30. (in Chinese with English abstract)Google Scholar
  14. 14.
    Yao Q, Cong L, He GY, Chang JL, Li KX, Yang GX (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34(1):61–67PubMedCrossRefGoogle Scholar
  15. 15.
    Ding LP, Gao Y, Li SC, Wang C, Wang YS, He GY (2007) Study on influencing factors of mature embryos of wheat by particle bombardment. J Wuhan Bot Res 25(3):217–221. (in Chinese with English abstract)Google Scholar
  16. 16.
    Liu X, Jin W, Liu J, Zhao H, Guo A (2011) Transformation of wheat with the HMW-GS 1Bx14 gene without markers. Russ J Genet 47(2):182–188CrossRefGoogle Scholar
  17. 17.
    Li YH, Song N, Wang YH, Peng FX, Zhou S, Tang HS et al (2013) Optimization of the tissue culture method using wheat mature embryos and its application in wheat transformation. J Triticeae Crops 33(1):6–12. (in Chinese with English abstract)Google Scholar
  18. 18.
    Min DH, He S, Zhang Y, Xia LQ (2013) Optimization of key bombardment parameters in biolistic mediated transformation in wheat. Acta Agron Sin 39(1):60–67. (in Chinese with English abstract)CrossRefGoogle Scholar
  19. 19.
    Ye XG, Sato S, Xu HJ, Du LP, Clemente T (2001) Regular production of transgenic wheat mediated with Agrobacterium tumefaciens. Sci Agric Sin 34(5):465–468. (in Chinese with English abstract)Google Scholar
  20. 20.
    Xue ZY, Zhi DY, Xia GM, Ling MX, Zhang H, Zhao YX (2003) Agrobacterium tumefaciens mediated AtNHX1 gene transformation to wheat. J Shandong Univ 38(1):106–109. (in Chinese with English abstract)Google Scholar
  21. 21.
    He J, Hu HY, Zhou Y, Zhao JJ, Wei QC (2011) Factors affecting wheat transformation mediate by Agrobacterium tumefaciens. J Henan Agric Sci 40(2):41–44. (in Chinese with English abstract)Google Scholar
  22. 22.
    Liu XH, Wang MQ, Xia GM (2013) Creation of new transgenic wheat germplasm with salt tolerance of TaCHP. Plant Physiol J 49(7):671–681. (in Chinese with English abstract)Google Scholar
  23. 23.
    Wang YF, Zhang J, Cui RL, Li W, Zhi H, Li HQ et al (2009) Transformation of wheat with DNAj gene from Foxtail millet via pollen-tube pathway. Acta Agric Bor Sin 24(2):17–21. (in Chinese with English abstract)Google Scholar
  24. 24.
    Liang H, Wu FS, Wang DW, Sun DF, Jia X (2005) Wheat transformation by electroporation with ring electrode. Acta Genet Sin 32(1):66–71. (in Chinese with English abstract)PubMedGoogle Scholar
  25. 25.
    Zhang XH, Zhao XJ, Li B, Li FF, Liu PX, Min DH (2013) Factors optimization of pollen electroporation transformation and identification of transgenic wheat. Sci Agric Sin 46(12):2403–2411. (in Chinese with English abstract)Google Scholar
  26. 26.
    He DG, Mouradov A, Yang YM, Mouradova E, Scott KJ (1994) Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14:192–196PubMedGoogle Scholar
  27. 27.
    Wu HX, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17(3):425–436PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang K, Liu JX, Zhang Y, Yang ZM, Gao CX (2015) Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics 42(1):39–42PubMedCrossRefGoogle Scholar
  29. 29.
    Li JR, Ye XG, An BY, Du LP, Xu HJ (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6(3):183–193CrossRefGoogle Scholar
  30. 30.
    Dong FS, Zhang YM, Yang F, Liang XC, Liu GR, Wang HB (2009) Research on shoot apical point transformation of wheat germinated seeds by particle bombardment. Acta Agric Boreal-Occident Sin 24(5):1–6. (in Chinese with English abstract)Google Scholar
  31. 31.
    Ren JP, Wang XG, Yin J, Song L, Li L, Ma DY (2004) Study on factors affecting microprojectile bombardment-mediated transformation of wheat. J Agric Univ Hebei 27(3):1–6. (in Chinese with English abstract)Google Scholar
  32. 32.
    Cai L, Sun DF, Sun GL (2014) Optimization of a biolistic transformation system for transfer of antifreeze gene KN2 and the bar herbicide resistance gene in common wheat. Genet Mol Res 13(2):3474–3485PubMedCrossRefGoogle Scholar
  33. 33.
    Sparks CA, Jones HD (2014) Genetic transformation of wheat via particle bombardment. Methods Mol Biol 1099:201–218PubMedCrossRefGoogle Scholar
  34. 34.
    Tinland B (1996) The integration of T-DNA into plant. Trends Plant Sci 1(6):178–184CrossRefGoogle Scholar
  35. 35.
    Repellin A, Baga M, Jauhar PP, Chibbar RN (2001) Genetic enrichment of cereal crops via alien gene transfer new challenges. Plant Cell Tissue Organ Cult 64(2–3):159–183CrossRefGoogle Scholar
  36. 36.
    Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282PubMedCrossRefGoogle Scholar
  37. 37.
    Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka C, Duncan DR et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wang YL, Ye XG, Liu YP, Du LP, Xu HJ (2005) Screening of wheat genotype sensitive to Agrobacterium tumefaciens infection. J Triticeae Crops 25(6):6–10. (in Chinese with English abstract)Google Scholar
  41. 41.
    Yang B, Ding LP, Yao L, He GY, Wang YS (2008) Effect of seedling ages and inoculation durations with Agrobacterium tumefacien on transformation frequency of the wheat wounded apical meristem. Mol Plant Breed 6(2):358–362Google Scholar
  42. 42.
    Ding LP, Li SC, Gao JM, Wang YS, Yang GX, He GY (2009) Optimization of agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36(1):29–36PubMedCrossRefGoogle Scholar
  43. 43.
    Song CL, Wang X, Xu H, Liu YT, Zhang GS, Wang JW (2012) The influencing factors of Agrobacterium tumefaciens infecting mature embryo of wheat (Triticum aestivum). J Triticeae Crops 32(2):209–214. (in Chinese with English abstract)Google Scholar
  44. 44.
    Bi RM, Jia HY, Feng DS, Wang HG (2006) Transgenic wheat ( Triticum aestivum L. ) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens-mediated. Chin J Biotechnol 22(3):431–437. (in Chinese with English abstract)Google Scholar
  45. 45.
    Ding LP, Chen L, Li SC, Li HD, Wang YS, Yang GX et al (2007) Factors influencing transformation of wheat (Triticum aestivum L. ) mature embryos mediated by Agrobacterium tumefaciens. J Triticeae Crops 27(5):761–766. (in Chinese with English abstract)Google Scholar
  46. 46.
    Luo ZX, Wu R (1988) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Report 6(3):165–174CrossRefGoogle Scholar
  47. 47.
    Zeng JZ, Wang DJ, Wu YQ, Zhang J, Zhou WJ, Zhu XP et al (1994) Transgenic wheat plants obtained with pollen-tube pathway method. Sci China Ser B 37(3):319–325Google Scholar
  48. 48.
    Qiu Z, Su Q, An LJ (2008) Application of FITC tracing in the optimization of wheat transformation via pollen-tube pathway. Acta Botan Boreali-Occiden Sin 28(3):611. (in Chinese with English abstract)Google Scholar
  49. 49.
    Ou QM, Cui WJ, Wang W, Ni JF, Wang HM, Yang FP et al (2013) Molecule-pyramiding breeding of new improved wheat varieties by introducing sorghum DNA via pollen-tube pathway. Agric Res Arid Areas 31(2):6. (in Chinese with English abstract)Google Scholar
  50. 50.
    Zhang L, Wang JF, Wang XJ, Kang ZS, Han DJ (2013) Wheat transformation of resistant genes to diseases using pollen-tube pathway. J Triticeae Crops 33(1):29–33. (in Chinese with English abstract)Google Scholar
  51. 51.
    Haliloglu K, Baenziger PS, Mitra A (2004) Genetic transformation of wheat (Triticum aestivum L.) anther culturederived embryroa by electropation. Biotechnol Biotechnol Equip 18(2):62–68CrossRefGoogle Scholar
  52. 52.
    Xu DB, Gao SQ, Ma YZ, Xu ZS, Zhao CP, Tang YM et al (2014) ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Funct Integr Genomics 14(4):717–730PubMedCrossRefGoogle Scholar
  53. 53.
    Huang QJ, Wang Y, Li B, Chang JL, Chen MJ, Li KX et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang LL, Fu RZ, Song GY, Zhang J, Xu ZP, Sun YR (1995) Introduction of exogenous genes into wheat using puncture technique of microbeam laser. Acta Genet Sin 22(5):394–399. (in Chinese with English abstract)Google Scholar
  55. 55.
    Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D et al (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15(3–4):159–163PubMedCrossRefGoogle Scholar
  56. 56.
    Wang XJ, Liu YL, Huang Y, Tian B (1996) Self-fertile transgenic wheat plants expressing herbicide bromoxynil resistance. Acta Bot Sin 38(12):942–948. (in Chinese with English abstract)Google Scholar
  57. 57.
    Chen LH, Wang XW, Zhang WJ, Zhang XD, Hu DF, Liu GT (1999) Transformation of common wheat (Triticum aestivum L.) with herbicide-resistant EPSPs gene. Acta Genet Sin 26(3):239–243. (in Chinese with English abstract)PubMedGoogle Scholar
  58. 58.
    Li SH, Li J, Wang NL, Wang YS, Yang GX, Fang JY et al (2007) Inheritance and expression of copies of transgenes 1Dx5 and 1Ax1 in elite wheat (Triticum aestivum L.) varieties transferred from transgenic wheat through conventional crossing. Acta Biochim Biophys Sin 39(5):377–383PubMedCrossRefGoogle Scholar
  59. 59.
    Wang YS, Li Y, Zhang L, Gao X, Miao YJ, Wang C et al (2010) Expression of the 1Ax1 transgene in an elite Chinese wheat variety and its effect on functional properties. J Sci Food Agric 90(1):106–111PubMedCrossRefGoogle Scholar
  60. 60.
    Mao X, Li Y, Zhao SS, Zhang J, Lei Q, Meng DD et al (2013) The interactive effects of transgenically overexpressed 1Ax1 with various HMW-GS combinations on dough quality by introgression of exogenous subunits into an elite Chinese wheat variety. PLoS One 8(10):e78451PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ma FY, Li M, Li TT, Liu W, Liu YY, Li Y et al (2013) Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers. PLoS One 8(7):e66758PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Li Y, Wang Q, Li XY, Xiao X, Sun FS, Wang C et al (2012) Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum). PLoS One 7(11):e50057PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Luo LT, Zhang JR, Yang GX, Li Y, Li KX, He GY (2008) Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol Biol Rep 35(2):195–200PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou CJ, Ge RC, Zhao BC, Huang ZJ, Shen YZ, He CF (2007) Study on transgenic wheat with rabbit defensin (NP-1) via the pollen-tube pathway. Acta Agric Bor Sin 22(2):26–28. (in Chinese with English abstract)Google Scholar
  65. 65.
    Liu ZW, Li HP, Cheng W, Yang P, Zhang JB, Gong AD et al (2012) Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. Eur J Plant Pathol 134(4):721–732CrossRefGoogle Scholar
  66. 66.
    Chen L, Zhang ZY, Liang HX, Liu HX, Du LP, Xu HJ et al (2008) Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot 59(15):4195–4204PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Liu P, Xu ZS, Lu PP, Hu D, Chen M, Li LC et al (2013) A wheat PI4K gene whose product possesses threonine autophosphorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot 64(10):2915–2927PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhu XL, Li Z, Xu HJ, Zhou MP, Du LP, Zhang ZY (2012) Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genomics 12(3):481–488PubMedCrossRefGoogle Scholar
  69. 69.
    Rong W, Qi L, Wang JF, Du LP, Xu HJ, Wang AY et al (2013) Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics 13(3):403–409PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou MP, Yu GH, Sun XB, Zhang X, Ma HX (2009) Co-transferring of AtDREB2A gene and bar gene into wheat through microprojectile bombardment. Jiangsu J Agric Sci 25(6):1224–1228. (in Chinese with English abstract)Google Scholar
  71. 71.
    Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW et al (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40PubMedCrossRefGoogle Scholar
  72. 72.
    Fu JM, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68(3):277–288PubMedCrossRefGoogle Scholar
  73. 73.
    Hu MY, Li H, Pang JZ, Liu Q, Zhang YJ, Sun LJ (2015) Overexpression of sucrose transporter (TaSUT1A) improves drought tolerance in transgenic wheat. Sci Agric Sin 48(8):1473–1483. (in Chinese with English abstract)Google Scholar
  74. 74.
    Chen KM, Li HW, Chen YF, Zheng Q, Li B, Li ZS (2015) TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. J Genet Genomics 42(1):21–32PubMedCrossRefGoogle Scholar
  75. 75.
    Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC et al (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311PubMedCrossRefGoogle Scholar
  76. 76.
    Rong W, Qi L, Wang AY, Ye XG, Du L, Liang HX et al (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12(4):468–479PubMedCrossRefGoogle Scholar
  77. 77.
    Kang GZ, Ma HZ, Liu GQ, Han QX, Li CW, Guo TC (2013) Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Mol Gen Genomics 288(11):591–599CrossRefGoogle Scholar
  78. 78.
    Wang C, Zeng J, Li Y, Hu W, Chen L, Miao YJ et al (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cong L, Wang C, Chen L, Liu HJ, Yang GX, He GY (2009) Expression of phytoene synthase 1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.) J Agric Food Chem 57(18):8652–8660PubMedCrossRefGoogle Scholar
  80. 80.
    Hong YT, Chen LF, Du LP, Su ZQ, Wang JF, Ye XG et al (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genomics 14(2):341–349PubMedCrossRefGoogle Scholar
  81. 81.
    Ma M, Zhao HX, Li ZJ, Hu SW, Song WN, Liu XL (2015) TaCYP78A5 regulates seed size in wheat (Triticum aestivum). J Exp Bot 67(5):1397–1410PubMedCrossRefGoogle Scholar
  82. 82.
    Kang GZ, Liu GQ, Peng XQ, Wei LT, Wang CY, Zhu YJ et al (2013) Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Biochem 73:93–98PubMedCrossRefGoogle Scholar
  83. 83.
    Qin N, Xu WG, Hu L, Li Y, Wang HW, Qi XL et al (2016) Drought tolerance and proteomics studies of transgenic wheat containing the maize C phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253(6):1503–1512PubMedCrossRefGoogle Scholar
  84. 84.
    Tosi P, D’Ovidio R, Napier JA, Bekes F, Shewry PR (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor Appl Genet 108(3):468–476PubMedCrossRefGoogle Scholar
  85. 85.
    León E, Marín S, Giménez MJ, Piston F, Rodríguez-Quijano M, Shewry PR et al (2009) Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1Ax1, 1Dx5 and 1Dy10 HMW glutenin subunit genes. J Cereal Sci 49(1):148–156CrossRefGoogle Scholar
  86. 86.
    Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58(3–4):113–120PubMedGoogle Scholar
  87. 87.
    Payne PI (1987) Genetics of wheat storage protein and effect of allelic variation in bread making quality. Annu Rev Plant Physiol 38:141–153CrossRefGoogle Scholar
  88. 88.
    Gupta RB, Shepherd KW (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor Appl Genet 80(2):183–187PubMedCrossRefGoogle Scholar
  89. 89.
    Nagamine T, Kai Y, Takayama T, Yanagisawa T, Taya S (2000) Allelic variation at the Glu-1 and Glu-3 loci in southern Japanese wheats, and its effects on gluten properties. J Cereal Sci 32(2):129–135CrossRefGoogle Scholar
  90. 90.
    Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45(3):219–302PubMedCrossRefGoogle Scholar
  91. 91.
    Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14(9):1155–1159PubMedCrossRefGoogle Scholar
  92. 92.
    Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R et al (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15(12):1295–1299PubMedCrossRefGoogle Scholar
  93. 93.
    Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N et al (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100(2):319–327CrossRefGoogle Scholar
  94. 94.
    Field JM, Bhandari D, Bonet A, Underwood C, Darlington H, Shewry P (2008) Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits 1Ax1 and 1Dx5 on gluten properties. J Cereal Sci 48(2):457–463CrossRefGoogle Scholar
  95. 95.
    Autran JC, Laignelet B, Morel MH (1987) Characterization and quantification of low molecular weight glutenins in durum wheats. Biochimie 69(6–7):699–711PubMedCrossRefGoogle Scholar
  96. 96.
    Wu F, Pan ZF, Yu MQ (2006) Research advances about low molecular weight glutenin subunits in wheat. Acta Botan Boreali-Occiden Sin 26(4):864–870. (in Chinese with English abstract)Google Scholar
  97. 97.
    Zhang XF, Jin H, Zhang Y, Liu DC, Li GY, Xia XC et al (2012) Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol 12:243PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Si HQ, Zhao ML, Zhang X, Yao GL, Sun GL, Ma CX (2014) Cloning and characterization of low-molecular-weight glutenin subunit alleles from Chinese wheat Landraces (Triticum aestivum L.) Sci World J 2014:1–6Google Scholar
  99. 99.
    Kan YC, Wan YF, Beaudoin F, Leader DJ, Edwards K, Poole R et al (2006) Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J Cereal Sci 44(1):75–85CrossRefGoogle Scholar
  100. 100.
    Chen P, Li R, Zhou R, He GY, Shewry PR (2010) Heterologous expression and dough mixing studies of a novel cysteine-rich avenin-like protein. Cereal Res Commun 38(3):406–418CrossRefGoogle Scholar
  101. 101.
    Pasha I, Anjum FM, Morris CF (2010) Grain hardness: a major determinant of wheat quality. Food Sci Technol Int 16(6):511–522PubMedCrossRefGoogle Scholar
  102. 102.
    Xia LQ, Geng HW, Chen XM, He ZH, Lillemo M, Morris CF (2008) Silencing of puroindoline a alters the kernel texture in transgenic bread wheat. J Cereal Sci 47(2):331–338CrossRefGoogle Scholar
  103. 103.
    Zeng J, Wang C, Chen X, Zang ML, Yuan CH, Wang XT et al (2015) The lycopene beta-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm. BMC Plant Biol 15:112PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zeng J, Wang XT, Miao YJ, Wang C, Zang ML, Chen X et al (2015) Metabolic engineering of wheat Provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHYD). J Agric Food Chem 63(41):9083–9092PubMedCrossRefGoogle Scholar
  105. 105.
    Liu X, Yang LH, Zhou XY, Zhou MP, Lu Y, Ma LJ et al (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64(8):2243–2253PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bhalla PL (2006) Genetic engineering of wheat—current challenges and opportunities. Trends Biotechnol 24(7):305–311PubMedCrossRefGoogle Scholar
  107. 107.
    Kosova K, Vitamvas P, Prasil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity – what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343PubMedPubMedCentralGoogle Scholar
  108. 108.
    Geng SF, Zhao YL, Tang LC, Zhang RZ, Sun MH, Guo HZ et al (2011) Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species: a case study in wheat (Triticum aestivum L.) Gene 475(2):94–103PubMedCrossRefGoogle Scholar
  109. 109.
    Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK et al (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170PubMedCrossRefGoogle Scholar
  110. 110.
    Wang C, Deng PY, Chen LL, Wang XT, Ma H, Hu W et al (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8(6):e65120PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Li XY, Gao SQ, Tang YM, Li L, Zhang FJ, Feng B et al (2015) Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics 16(1):976PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sun T, Wang Y, Wang M, Li TT, Zhou Y, Wang XT et al (2015) Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.) BMC Plant Biol 15:269PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang XT, Zeng J, Li Y, Rong XL, Sun JT, Sun T et al (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615PubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhang HY, Mao XG, Wang CS, Jing RL (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5(12):e16041PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Qin YX, Wang MC, Tian YC, He WX, Han L, Xia GM (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39(6):7183–7192PubMedCrossRefGoogle Scholar
  116. 116.
    Sun Y, Xu W, Jia YB, Wang MC, Xia GM (2015) The wheat TaGBF1 gene is involved in blue-light response and salt tolerance. Plant J 84:1219–1230PubMedCrossRefGoogle Scholar
  117. 117.
    Xu ZY, Gongbuzhaxi, Wang CY, Xue F, Zhang H, Ji WQ (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem 96:356–363PubMedCrossRefGoogle Scholar
  118. 118.
    Deng XM, Hu W, Wei SY, Zhou SY, Zhang F, Han JP et al (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8(7):e69881PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Deng XM, Zhou SY, Hu W, Feng JL, Zhang F, Chen LH et al (2013) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149(3):367–377PubMedGoogle Scholar
  120. 120.
    Hu W, Huang C, Deng XM, Zhou SY, Chen LH, Li Y et al (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36(8):1449–1464PubMedCrossRefGoogle Scholar
  121. 121.
    Lu WJ, Guo CJ, Li XJ, Duan WW, Ma CY, Zhao M et al (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28PubMedCrossRefGoogle Scholar
  122. 122.
    He CM, Yang AF, Zhang WW, Gao Q, Zhang JR (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tissue Organ Cult 101(1):65–78CrossRefGoogle Scholar
  123. 123.
    Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM et al (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45(2):421–430PubMedCrossRefGoogle Scholar
  124. 124.
    Xiao LL, Du LP, Wang K, Li XH, Xu HJ, Yan YM et al (2014) Main factors influencing the efficiency of biolistic particle mediated transformation in wheat. J Plant Genet Resour 15(4):850–858. (in Chinese with English abstract)Google Scholar
  125. 125.
    Xu YF, An DG, Li HJ, Xu HX (2011) Review: Breeding wheat for enhanced micronutrients. Can J Plant Sci 91(2):231–237CrossRefGoogle Scholar
  126. 126.
    Min DH, Wu P, Zhang XH, Xu ZS, Chen M, Li LC et al (2012) Transfer of TaEBP gene into cultivated wheat variety by backcrossing. Seed 31(8):18–22. 26 (in Chinese with English abstract)Google Scholar
  127. 127.
    Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95PubMedCrossRefGoogle Scholar
  129. 129.
    Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87–90PubMedCrossRefGoogle Scholar
  130. 130.
    Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B et al (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168(2):1087–1096PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R et al (2013) A physical map of the short arm of wheat chromosome 1A. PLoS One 8(11):e80272PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345(6194):1249721PubMedCrossRefGoogle Scholar
  133. 133.
    IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788CrossRefGoogle Scholar
  134. 134.
    Poursarebani N, Nussbaumer T, Simkova H, Safar J, Witsenboer H, van Oeveren J et al (2014) Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J 79(2):334–347PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Garbus I, Romero JR, Valarik M, Vanzurova H, Karafiatova M, Caccamo M et al (2015) Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 16:375PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kobayashi F, Wu JZ, Kanamori H, Tanaka T, Katagiri S, Karasawa W et al (2015) A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics 16:595PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99(2):365–371PubMedCrossRefGoogle Scholar
  138. 138.
    Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Vale G et al (2016) Next generation breeding. Plant Sci 242:3–13PubMedCrossRefGoogle Scholar
  139. 139.
    Dong LL, Liu HF, Zhang JC, Yang SJ, Kong GY, Chu JSC et al (2015) Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 16(1):1039PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455PubMedCrossRefGoogle Scholar
  141. 141.
    Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688PubMedCrossRefGoogle Scholar
  142. 142.
    Shan QW, Wang YP, Li J, Gao CX (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395–2410PubMedCrossRefGoogle Scholar
  143. 143.
    Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jiapeng Han
    • 1
  • Xiaofen Yu
    • 1
  • Junli Chang
    • 1
  • Guangxiao Yang
    • 1
  • Guangyuan He
    • 1
    Email author
  1. 1.The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations