Skip to main content

Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

The use of sequence-specific transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats-associated system (CRISPR/Cas9) have provided powerful reverse genetic approaches to the targeted modification of genomes in numerous organisms. Both systems have been employed to generate loss-of-function alleles in bread wheat, by targeting multiple and single copies of genes. Here we present protocols for modifying the wheat genome using the two systems. The protocols include the design of TALEN and CRISPR/Cas9 target sites and their construction, evaluation of their activities in protoplasts, transformation of plants, and mutation screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dvořák J (2009) Triticeae genome structure and evolution. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the triticeae. Springer, New York, pp 685–711

    Google Scholar 

  2. Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  CAS  PubMed  Google Scholar 

  3. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lukens L, Fitzgerald TL, Powell JJ, Stiller J, Weese TL, Abe T, Zhao G, Jia J, McIntyre CL, Li Z et al (2015) An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.) PLoS One 10:e0117369

    Article  Google Scholar 

  5. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing Gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  6. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  7. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  10. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen K, Gao C (2013) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–578

    Google Scholar 

  13. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  14. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  15. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh J-RJ (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotech 29:697–698

    Article  CAS  Google Scholar 

  18. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotech 30:460–465

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32:947–951

    Article  CAS  Google Scholar 

  21. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protocols 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  22. Zhang K, Liu J, Zhang Y, Yang Z, Gao C (2015) Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics 42:39–42

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Research and Development Program of China (2016YFD0101804), the Chinese Academy of Sciences (KFZD-SW-107 and GJHZ1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, Y., Zong, Y., Gao, C. (2017). Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics