Advertisement

NMDA Receptors pp 201-230 | Cite as

Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations

  • Rolf Sprengel
  • Ahmed Eltokhi
  • Frank N. Single
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1677)

Abstract

For the genetic alterations of NMDA receptor (NMDAR) properties like Ca2+-permeability or voltage-dependent gating in mice and for the experimental analysis of nonsense or missense mutations that were identified in human patients, single nucleotide mutations have to be introduced into the germ line of mice (Burnashev and Szepetowski, Curr Opin Pharmacol 20:73–82, 2015; Endele et al., Nat Genet 42:1021–1026, 2010). This can be done with very high precision by the well-established method of gene replacement, which makes use of homologous recombination in pluripotent embryonic stem (ES) cells of mice. The homologous recombination at NMDAR subunit genes (Grin; for glutamate receptor ionotropic NMDAR subtype) has to be performed by targeting vectors, also called replacement vectors. The targeting vector should encode part of the gene for the NMDAR subunit, the NMDAR mutation, and a removable selection maker. In these days, the targeting vector can be precisely designed using DNA sequences from public databases. The assembly of the vector is then done from isogenic NMDAR gene fragments cloned in bacterial artificial chromosomes (BACs) using “high fidelity” long-range PCR reactions. During these PCR reactions, the NMDAR mutations are introduced into the cloned NMDAR gene fragments of the targeting vector. Finally, the targeting vector is used for homologous recombination in mouse ES cells. Positive ES cell clones which have the correct mutation have to be selected and are then used for blastocyst injection to generate chimeric mice that hopefully transmit the Grin gene targeted ES cells to their offspring. In the first offspring generation of the founder (F1), some animals will be heterozygous for the targeted NMDAR gene mutation. In order to regulate the expression of NMDAR mutations, it is important to keep the targeted NMDAR mutation under conditional control. Here, we describe a general method how those conditionally controlled NMDAR mutations can be engraved into the germ line of mice as hypomorphic Grin alleles. By breeding these hypomorphic Grin gene targeted mice with Cre recombinase expressing mice, the hypomorphic Grin allele can be activated at specific time points in specific cell types, and the function of the mutated NMDAR can be analyzed in these - so called - conditional mouse models. In this method chapter, we describe in detail the different methodical steps for successful gene targeting and generation of conditional NMDAR mutant mouse lines. Within the last 20 years, several students in our Department of Molecular Neurobiology in Heidelberg used these techniques several times to generate different mouse lines with mutated NMDARs.

Key words

Gene targeting Grin1 GluN1 Hypomorphic allele Southern blot Genotyping 

Notes

Acknowledgments

We thank Annette Herold and Markus Hüser for providing and testing the most recent protocols for genotyping genomic DNA from mice. The gene targeting of NMDAR and AMPAR subunit genes was supported by the Max Planck Society and the German Research Foundation (SFB636/A4 to R.S.).

References

  1. 1.
    Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. doi: 10.1016/j.coph.2014.11.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, Kortüm F, Fritsch A, Pientka FK, Hellenbroich Y, Kalscheuer VM, Kohlhase J, Moog U, Rappold G, Rauch A, Ropers H-H, von Spiczak S, Tönnies H, Villeneuve N, Villard L, Zabel B, Zenker M, Laube B, Reis A, Wieczorek D, Van Maldergem L, Kutsche K (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42(11):1021–1026. doi: 10.1038/ng.677 CrossRefPubMedGoogle Scholar
  3. 3.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi: 10.1016/j.cell.2014.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355. doi: 10.1038/nbt.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Inui M, Miyado M, Igarashi M, Tamano M, Kubo A, Yamashita S, Asahara H, Fukami M, Takada S (2014) Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep 4:5396. doi: 10.1038/srep05396 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Single FN, Rozov A, Burnashev N, Zimmermann F, Hanley DF, Forrest D, Curran T, Jensen V, Hvalby Ø, Sprengel R, Seeburg PH (2000) Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R). J Neurosci 20(7):2558–2566PubMedGoogle Scholar
  7. 7.
    Niewoehner B, Single FN, Hvalby Ø, Jensen V, Meyer zum Alten Borgloh S, Seeburg PH, JNP R, Sprengel R, Bannerman DM (2007) Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci 25(3):837–846. doi: 10.1111/j.1460-9568.2007.05312.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218. doi: 10.1126/science.1071795 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317(5834):94–99. doi: 10.1126/science.1140263 CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashi Y, Nabeshima Y, Kobayashi K, Miyakawa T, Tanda K, Takao K, Suzuki H, Esumi E, Noguchi S, Matsuda Y, Sasaoka T, Noda T, J-i M, Mishina M, Funabiki K, Nabeshima Y (2014) Enhanced stability of hippocampal place representation caused by reduced magnesium block of NMDA receptors in the dentate gyrus. Mol Brain 7(1):44–17. doi: 10.1186/1756-6606-7-44 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755. doi: 10.1038/35093537 CrossRefPubMedGoogle Scholar
  12. 12.
    Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 245–263. doi: 10.1007/978-1-60327-019-9_16 CrossRefGoogle Scholar
  13. 13.
    Deng C-X (2011) Chapter 2: The use of Cre–loxP technology and inducible systems to generate mouse models of cancer. In: Green JE, Ried T (eds) Genetically engineered mice for cancer research: design, analysis, pathways, validation and pre-clinical testing, vol 2. Springer New York, New York, NY, pp 17–36. doi: 10.1007/978-0-387-69805-2_2 Google Scholar
  14. 14.
    Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109CrossRefPubMedGoogle Scholar
  15. 15.
    Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392. doi: 10.1006/meth.1998.0593 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X (2009) Cre transgenic mouse lines. In: Cartwright EJ (ed) Transgenic techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 265–273. doi: 10.1007/978-1-60327-019-9_17 CrossRefGoogle Scholar
  17. 17.
    Heffner CS, Pratt CH, Babiuk RP, Sharma Y, Rockwood SF, Donahue LR, Eppig JT, Murray SA (2012) Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun 3:1218. doi: 10.1038/ncomms2186 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, Bohn P, Mortrud M, Ouellette B, Kidney J, Smith KA, Dang C, Sunkin S, Bernard A, Oh SW, Madisen L, Zeng H (2014) Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 8:76. doi: 10.3389/fncir.2014.00076 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27(22):4324–4327CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shimshek DR, Kim J, Hübner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32(1):19–26CrossRefPubMedGoogle Scholar
  21. 21.
    Sprengel R, Hasan MT (2007) Tetracycline-controlled genetic switches. In: Feil R, Metzger D (eds) Conditional mutagenesis: an approach to disease models, vol 178. Springer, Berlin, pp 49–72CrossRefGoogle Scholar
  22. 22.
    Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby Ø, Rawlins JNP, Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15(8):1153–1159. doi: 10.1038/nn.3166 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15(3):181–192. doi: 10.1038/nrn3677 CrossRefPubMedGoogle Scholar
  24. 24.
    Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270(5242):1677–1680CrossRefPubMedGoogle Scholar
  25. 25.
    Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A, Burnashev N, Jensen V, Hvalby Ø, Sprengel R, Seeburg PH (1999) Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 2(1):57–64. doi: 10.1038/4561 CrossRefPubMedGoogle Scholar
  26. 26.
    Krestel HE, Shimshek DR, Jensen V, Nevian T, Kim J, Geng Y, Bast T, Depaulis A, Schonig K, Schwenk F, Bujard H, Hvalby Ø, Sprengel R, Seeburg PH (2004) A genetic switch for epilepsy in adult mice. J Neurosci 24(46):10568–10578. doi: 10.1523/JNEUROSCI.4579-03.2004 CrossRefPubMedGoogle Scholar
  27. 27.
    Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Gunther W, Seeburg PH, Sakmann B (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257(5075):1415–1419CrossRefPubMedGoogle Scholar
  28. 28.
    Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA Receptor Channel M2 segment inferred from the accessibility of substituted Cysteines. Neuron 17(2):343–352. doi: 10.1016/S0896-6273(00)80165-8 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee C-H, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. doi: 10.1038/nature13548 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuner T, Seeburg PH, Guy HR (2003) A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26(1):27–32CrossRefPubMedGoogle Scholar
  31. 31.
    Sprengel R, Aronoff R, Völkner M, Schmitt B, Mosbach R, Kuner T (2001) Glutamate receptor channel signatures. Trends Pharmacol Sci 22(1):7–10CrossRefPubMedGoogle Scholar
  32. 32.
    Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16(12):521–527CrossRefPubMedGoogle Scholar
  33. 33.
    Chen PE, Errington ML, Kneussel M, Chen G, Annala AJ, Rudhard YH, Rast GF, Specht CG, Tigaret CM, Nassar MA, Morris RG, Bliss TV, Schoepfer R (2009) Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of mutant NMDA receptors throughout the hippocampus. Learn Mem 16(10):635–644. doi: 10.1101/lm.1316909 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rudhard Y, Kneussel M, Nassar MA, Rast GF, Annala AJ, Chen PE, Tigaret CM, Dean I, Roes J, Gibb AJ, Hunt SP, Schoepfer R (2003) Absence of whisker-related pattern formation in mice with NMDA receptors lacking coincidence detection properties and calcium signaling. J Neurosci 23(6):2323–2332PubMedGoogle Scholar
  35. 35.
    Cartwright EJ (2009) In: Cartwright EJ (ed) Transgenesis techniques. Principles and protocols, Methods in molecular biology, vol 561, 3rd edn. Springer/Humana Press, Totowa, NJ. doi: 10.1007/978-1-60327-019-9 CrossRefGoogle Scholar
  36. 36.
    Joyner AL (2003) Gene targeting: a practical approach, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. 38.
    Gao K, Masuda A, Matsuura T, Ohno K (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36(7):2257–2267. doi: 10.1093/nar/gkn073 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harris NL, Senapathy P (1990) Distribution and consensus of branch point signals in eukaryotic genes: a computerized statistical analysis. Nucleic Acids Res 18(10):3015–3019CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yenofsky RL, Fine M, Pellow JW (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc Natl Acad Sci U S A 87(9):3435–3439CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Friedel RH (2009) Targeting embryonic stem cells. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 185–197. doi: 10.1007/978-1-60327-019-9_12 CrossRefGoogle Scholar
  42. 42.
    Barbaric I, Dear TN (2009) Culture of murine embryonic stem cells. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 161–184. doi: 10.1007/978-1-60327-019-9_11 CrossRefGoogle Scholar
  43. 43.
    Pluck A, Klasen C (2009) Generation of chimeras by microinjection. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 199–217. doi: 10.1007/978-1-60327-019-9_13 CrossRefGoogle Scholar
  44. 44.
    Pluck A, Klasen C (2009) Surgical techniques for the generation of mutant mice. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 231–243. doi: 10.1007/978-1-60327-019-9_15 CrossRefGoogle Scholar
  45. 45.
    Pluck A, Klasen C (2009) Generation of chimeras by morula aggregation. In: Cartwright EJ (ed) Transgenesis techniques, Methods in molecular biology, vol 561. Humana Press, New York, pp 219–229. doi: 10.1007/978-1-60327-019-9_14 CrossRefGoogle Scholar
  46. 46.
    Crawley JN (1996) Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci 19(5):181–182CrossRefPubMedGoogle Scholar
  47. 47.
    Wehner JM, Silva A (1996) Importance of strain differences in evaluations of learning and memory processes in null mutants. Dev Disabil Res Rev 2(4):243–248. doi: 10.1002/(SICI)1098-2779(1996)2:4<243::AID-MRDD8>3.0.CO;2-R Google Scholar
  48. 48.
    Silva AJ, Simpson EM, Takahashi JS, Lipp H-P, Nakanishi S, Wehner JM, Giese KP, Tully T, Abel T, Chapman PF, Fox K, Grant S, Itohara S, Lathe R, Mayford M, Mcnamara JO, Morris RJ, Picciotto M, Roder J, Shin H-S, Slesinger PA, Storm DR, Stryker MP, Tonegawa S, Wang Y, Wolfer DP (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19(4):755–759CrossRefGoogle Scholar
  49. 49.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. doi: 10.1038/5007 CrossRefPubMedGoogle Scholar
  50. 50.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. doi: 10.1038/nn.2467 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Rolf Sprengel
    • 1
    • 2
  • Ahmed Eltokhi
    • 2
    • 3
  • Frank N. Single
    • 1
    • 4
  1. 1.Department of Molecular NeurobiologyMax Planck Institute for Medical ResearchHeidelbergGermany
  2. 2.Max Planck Research Group, Institute for Anatomy and Cell BiologyHeidelberg UniversityHeidelbergGermany
  3. 3.Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
  4. 4.Miltenyi Biotec GmbHBergisch GladbachGermany

Personalised recommendations