Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes

  • Václaclav Bačovský
  • Roman Hobza
  • Boris VyskotEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1675)


Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.

Key words

Cell synchronization Chromosome spreads Laser microdissection Cytogenetics FISH Immunostaining Antibodies 



This research was supported by the Czech Science Foundation (grant 16-08698S). We greatly thank to Dr. Alexander Oulton for English revision of this chapter. We would like to thank to Dr. Jiri Siroky and Veronika Balounova for valuable comments.


  1. 1.
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 6814):796-815.. doi:
  2. 2.
    Cools T, Iantcheva A, Maes S, Van den Daele H, De Veylder L (2010) A replication stress-induced synchronization method for Arabidopsis thaliana root meristems. Plant J 64(4):705–714. doi: 10.1111/j.1365-313X.2010.04361.x CrossRefPubMedGoogle Scholar
  3. 3.
    Halfmann RASD, Young DH (2007) Towards improved cell cycle synchronization and chromosome preparation. Method Cotton Sci 67:60–67Google Scholar
  4. 4.
    Andersson HC (1983) Hydroxyurea induces sister chromatid exchanges in G2: implications for the formation of chromosomal aberrations. Hereditas 98(1):61–64. doi: 10.1111/j.1601-5223.1983.tb00578.x CrossRefGoogle Scholar
  5. 5.
    Dolezel J, Cihalikova J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188(1):93–98CrossRefPubMedGoogle Scholar
  6. 6.
    Pan WH, Houben A, Schlegel R (1993) Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine. Genome 36(2):387–390. doi: 10.1139/g93-053 CrossRefPubMedGoogle Scholar
  7. 7.
    Karafiátová M, Bartoš J, Doležel J (2016) Localization of low-copy DNA sequences on mitotic chromosomes by FISH. In: Kianian SF, Kianian PMA (eds) Plant cytogenetics: methods and protocols. Springer, New York, NY, pp 49–64. doi: 10.1007/978-1-4939-3622-9_5 CrossRefGoogle Scholar
  8. 8.
    Karafiátová M, Bartoš J, Kopecký D, Ma L, Sato K, Houben A, Stein N, Doležel J (2013) Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res 21(8):739–751. doi: 10.1007/s10577-013-9380-x CrossRefPubMedGoogle Scholar
  9. 9.
    Martin R, Busch W, Herrmann RG, Wanner G (1994) Efficient preparation of plant chromosomes for high-resolution scanning electron microscopy. Chromosome Res 2(5):411–415. doi: 10.1007/bf01552801 CrossRefPubMedGoogle Scholar
  10. 10.
    Kato A, Kato A, Albert PS, Vega JM, Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81(2-3):71–78. doi: 10.1080/10520290600643677 CrossRefPubMedGoogle Scholar
  11. 11.
    Aliyeva-Schnorr L, Ma L, Houben A (2015) A fast air-dry dropping chromosome preparation method suitable for fish in plants. J Vis Exp (106):e53470. doi: 10.3791/53470
  12. 12.
    Hobza R, Vyskot B (2007) Laser microdissection-based analysis of plant sex chromosomes. In: Methods in cell biology, vol 82. Academic Press, New York, NY, pp 433–453. doi: 10.1016/S0091-679X(06)82015-7 Google Scholar
  13. 13.
    Tessadori F, Chupeau M-C, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120(7):1200–1208. doi: 10.1242/jcs.000026 CrossRefPubMedGoogle Scholar
  14. 14.
    Khlestkina EK (2014) Current applications of wheat and wheat–alien precise genetic stocks. Mol Breed 34(2):273–281. doi: 10.1007/s11032-014-0049-8 CrossRefGoogle Scholar
  15. 15.
    Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8(2):e57994. doi: 10.1371/journal.pone.0057994 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lebo RV (1982) Chromosome sorting and DNA sequence localization. Cytometry 3(3):145–154. doi: 10.1002/cyto.990030302 CrossRefPubMedGoogle Scholar
  17. 17.
    Raap AK, van de Corput MPC, Vervenne RAM, van Gijlswijk RPM, Tanke HJ, Wiegant J (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum Mol Genet 4(4):529–534. doi: 10.1093/hmg/4.4.529 CrossRefPubMedGoogle Scholar
  18. 18.
    Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23(1):57–69. doi: 10.1023/a:1013137415093 CrossRefPubMedGoogle Scholar
  19. 19.
    Doležel J, Vrána J, Šafář J, Bartoš J, Kubaláková M, Šimková H (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12(3):397–416. doi: 10.1007/s10142-012-0293-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chambers R, Sands HC (1923) A dissection of the chromosomes in the pollen mother cells of tradescantia virginica L. J Gen Physiol 5(6):815–819CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Di Bucchianico S, Poma AM, Giardi MF, Di Leandro L, Valle F, Biscarini F, Botti D (2011) Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes. J Nanobiotechnol 9:27–27. doi: 10.1186/1477-3155-9-27 CrossRefGoogle Scholar
  22. 22.
    Deng C-l, R-y Q, Cao Y, Gao J, S-f L, Gao W-j, Lu L-d (2013) Microdissection and painting of the Y chromosome in spinach (Spinacia oleracea). J Plant Res 126(4):549–556. doi: 10.1007/s10265-013-0549-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Yakovin N, Divashuk M, Yakovin N, Razumova O, Soloviev A, Karlov G (2014) Use of laser microdissection for the construction of Humulus japonicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis. Compar Cytogenet 8(4):323. doi: 10.3897/CompCytogen.v8i4.8473 CrossRefGoogle Scholar
  24. 24.
    Sandery MJ, Forster JW, Macadam SR, Blunden R, Jones RN, Brown SDM (1991) Isolation of a sequence common to A- and B-chromosomes of rye (Secale cereale) by microcloning. Plant Mol Biol Rep 9(1):21–30. doi: 10.1007/bf02669286 CrossRefGoogle Scholar
  25. 25.
    Liu B, Segal G, Vega JM, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11(5):959–965. doi: 10.1046/j.1365-313X.1997.11050959.x CrossRefGoogle Scholar
  26. 26.
    Stein N, Ponelies N, Musket T, McMullen M, Weber G (1998) Chromosome micro-dissection and region-specific libraries from pachytene chromosomes of maize (Zea mays L.) Plant J 13(2):281–289. doi: 10.1046/j.1365-313X.1998.00033.x CrossRefGoogle Scholar
  27. 27.
    Ludecke H-J, Senger G, Claussen U, Horsthemke B (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338(6213):348–350CrossRefPubMedGoogle Scholar
  28. 28.
    Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8(2):148–154. doi: 10.1016/j.pbi.2005.01.014 CrossRefPubMedGoogle Scholar
  29. 29.
    Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46(6):953–962. doi: 10.1139/g03-119 CrossRefPubMedGoogle Scholar
  30. 30.
    Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175(4):756–763. doi: 10.1111/j.1469-8137.2007.02121.x CrossRefPubMedGoogle Scholar
  31. 31.
    Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51(5):350–356. doi: 10.1139/G08-024 CrossRefPubMedGoogle Scholar
  32. 32.
    Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The triploid endosperm genome of arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19(6):1782–1794. doi: 10.1105/tpc.106.046235 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982CrossRefPubMedGoogle Scholar
  34. 34.
    Gindullis F, Desel C, Galasso I, Schmidt T (2001) The large-scale organization of the centromeric region in Beta species. Genome Res 11(2):253. doi: 10.1101/gr.162301 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2(1):4. doi: 10.1186/1759-8753-2-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16(7):961–976. doi: 10.1007/s10577-008-1254-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Kralova T, Cegan R, Kubat Z, Vrana J, Vyskot B, Vogel I, Kejnovsky E, Hobza R (2014) Identification of a novel retrotransposon with sex chromosome-specific distribution in silene latifolia. Cytogenet Genome Res 143(1-3):87–95CrossRefPubMedGoogle Scholar
  38. 38.
    Hobza R, Kubat Z, Cegan R, Jesionek W, Vyskot B, Kejnovsky E (2015) Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res 23(3):561–570. doi: 10.1007/s10577-015-9496-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Bennetzen JL (2000) The many hues of plant heterochromatin. Genome Biol 1(1):reviews107.101–reviews107.104CrossRefGoogle Scholar
  40. 40.
    Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100(3):367–376. doi: 10.1016/S0092-8674(00)80672-8 CrossRefPubMedGoogle Scholar
  41. 41.
    Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12(4):164–171. doi: 10.1016/j.gpb.2014.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33(6):967–973. doi: 10.1046/j.1365-313X.2003.01681.x CrossRefPubMedGoogle Scholar
  43. 43.
    Richards EJ, Dawe RK (1998) Plant centromeres: structure and control. Curr Opin Plant Biol 1(2):130–135. doi: 10.1016/S1369-5266(98)80014-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SWL (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14(1):R10–R10. doi: 10.1186/gb-2013-14-1-r10 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fransz P, Armstrong S, Alonso-blanco C, Fischer TC, Torres-ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13(6):867–876. doi: 10.1046/j.1365-313X.1998.00086.x CrossRefPubMedGoogle Scholar
  46. 46.
    Koo D-H, Plaha P, Lim YP, Hur Y, Bang J-W (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109(7):1346–1352. doi: 10.1007/s00122-004-1771-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101(37):13554–13559. doi: 10.1073/pnas.0403659101 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Široký J, Lysák MA, Doležel J, Kejnovský E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9(5):387–393. doi: 10.1023/a:1016783501674 CrossRefPubMedGoogle Scholar
  49. 49.
    Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105(4):491–497. doi: 10.1007/s00122-002-0975-4 CrossRefPubMedGoogle Scholar
  50. 50.
    Vischi M, Jurman I, Bianchi G, Morgante M (2003) Karyotype of Norway spruce by multicolor FISH. Theor Appl Genet 107(4):591–597. doi: 10.1007/s00122-003-1306-0 CrossRefPubMedGoogle Scholar
  51. 51.
    Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious cannabis sativa with an XY chromosome sex determination system. PLoS One 9(1):e85118. doi: 10.1371/journal.pone.0085118 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lysak MA, Mandáková T, Lacombe E (2010) Reciprocal and multi-species chromosome BAC painting in crucifers (Brassicaceae). Cytogenet Genome Res 129(1-3):184–189CrossRefPubMedGoogle Scholar
  53. 53.
    Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20(10):2559–2570. doi: 10.1105/tpc.108.062166 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lysak MA, Cheung K, Kitschke M, Bureš P (2007) Ancestral chromosomal blocks are triplicated in brassiceae species with varying chromosome number and genome size. Plant Physiol 145(2):402–410. doi: 10.1104/pp.107.104380 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28(6):689–697. doi: 10.1046/j.1365-313x.2001.01194.x CrossRefPubMedGoogle Scholar
  56. 56.
    Mandáková T, Lysak MA (2016) Painting of arabidopsis chromosomes with chromosome-specific BAC clones. In: Current protocols in plant biology. John Wiley & Sons, Inc., New York, NY. doi: 10.1002/cppb.20022 Google Scholar
  57. 57.
    Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113(5):258–269. doi: 10.1007/s00412-004-0316-2 CrossRefPubMedGoogle Scholar
  58. 58.
    Ohmido N, Fukui K, Kinoshita T (2010) Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc Jpn Acad Ser B Phys Biol Sci 86(2):103–116. doi: 10.2183/pjab.86.103 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jenkins G, Hasterok R (2007) BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2(1):88–98.
  60. 60.
    Kim J-S, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45(2):402–412. doi: 10.1139/g01-141 CrossRefPubMedGoogle Scholar
  61. 61.
    Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, McKnight TD (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40(1):138–142. doi: 10.1139/g97-020 CrossRefPubMedGoogle Scholar
  62. 62.
    Sadder MT, Ponelies N, Born U, Weber G (2000) Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome 43(6):1081–1083. doi: 10.1139/gen-43-6-1081 CrossRefPubMedGoogle Scholar
  63. 63.
    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64(3):315–324. doi: 10.1093/oxfordjournals.aob.a087847 CrossRefGoogle Scholar
  64. 64.
    Markova M, Vyskot B (2009) New horizons of genomic in situ hybridization. Cytogenet Genome Res 126(4):368–375CrossRefPubMedGoogle Scholar
  65. 65.
    Peterson DG, Lapitan NL, Stack SM (1999) Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152(1):427–439PubMedPubMedCentralGoogle Scholar
  66. 66.
    Szinay D, Chang S-B, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, Van Ham RCHJ, De Jong H, Klein Lankhorst RM (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56(4):627–637. doi: 10.1111/j.1365-313X.2008.03626.x CrossRefPubMedGoogle Scholar
  67. 67.
    Raap AK, Marijnen JGJ, Vrolijk J, van der Ploeg M (1986) Denaturation, renaturation, and loss of DNA during in situ hybridization procedures. Cytometry 7(3):235–242. doi: 10.1002/cyto.990070303 CrossRefPubMedGoogle Scholar
  68. 68.
    G McNamara (2007) Fluorophore Table-Earthlink. Accessed February 2, 2017Google Scholar
  69. 69.
    Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, Stein N, Houben A (2015) Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J 84(2):385–394. doi: 10.1111/tpj.13006 CrossRefPubMedGoogle Scholar
  70. 70.
    Feng C-M, Qiu Y, Van Buskirk EK, Yang EJ, Chen M (2014) Light-regulated gene repositioning in Arabidopsis. Nat Commun 5:3027. doi: 10.1038/ncomms4027. PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hesse S, Manetto A, Cassinelli V, Fuchs J, Ma L, Raddaoui N, Houben A (2016) Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction. Chromosome Res 24(3):299–307. doi: 10.1007/s10577-016-9522-z CrossRefPubMedGoogle Scholar
  72. 72.
    Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25(6):699–707. doi: 10.1046/j.1365-313x.2001.00995.x CrossRefPubMedGoogle Scholar
  73. 73.
    Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L (2014) Anchoring linkage groups of the rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PLoS One 9(4):e95793. doi: 10.1371/journal.pone.0095793 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pérez R, de Bustos A, Jouve N, Cuadrado Á (2009) Localization of Rad50, a single-copy gene, on group 5 chromosomes of wheat, using a FISH protocol employing tyramide for signal amplification (Tyr-FISH). Cytogenet Genome Res 125(4):321–328CrossRefPubMedGoogle Scholar
  75. 75.
    Sanz MJ, Loarce Y, Ferrer E, Fominaya A (2012) Use of tyramide-fluorescence in situ hybridization and chromosome microdissection for ascertaining homology relationships and chromosome linkage group associations in oats. Cytogenet Genome Res 136(2):145–156CrossRefPubMedGoogle Scholar
  76. 76.
    Stephens JL, Brown SE, Lapitan NLV, Knudson DL (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47(1):179–189. doi: 10.1139/g03-084 CrossRefPubMedGoogle Scholar
  77. 77.
    Wiegant J, Ried T, Nederlof PM, van der Ploeg M, Tanke HJ, Raap AK (1991) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19(12):3237–3241CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9(2):95–102. doi: 10.1093/bfgp/elp058 CrossRefPubMedGoogle Scholar
  79. 79.
    Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9(3):421–430. doi: 10.1046/j.1365-313X.1996.09030421.x CrossRefPubMedGoogle Scholar
  80. 80.
    Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41(4):566–572. doi: 10.1139/g98-093 CrossRefPubMedGoogle Scholar
  81. 81.
    Wang K, Zhang W, Jiang Y, Zhang T (2013) Systematic application of DNA fiber-FISH technique in cotton. PLoS One 8(9):e75674. doi: 10.1371/journal.pone.0075674 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci 98(9):5099–5103. doi: 10.1073/pnas.091110398 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Dong F, Miller JT, Jackson SA, Wang G-L, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci 95(14):8135–8140CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jackson SA, Cheng Z, Li Wang M, Goodman HM, Jiang J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the brassica rapa genome. Genetics 156(2):833–838PubMedPubMedCentralGoogle Scholar
  85. 85.
    Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13(2):245–254CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y (2005) Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics 273(2):123–129. doi: 10.1007/s00438-005-1116-y CrossRefPubMedGoogle Scholar
  87. 87.
    Beliveau BJ, Apostolopoulos N, Wu C-t (2001) Visualizing genomes with oligopaint FISH probes. In: Current protocols in plant biology. John Wiley & Sons, Inc., New York, NY. doi: 10.1002/0471142727.mb1423s105 Google Scholar
  88. 88.
    Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in cucumis species using bulked oligonucleotides. Genetics 200(3):771–779. doi: 10.1534/genetics.115.177642 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Murgha Y, Beliveau B, Semrau K, Schwartz D, Wu C-t, Gulari E, Rouillard J-M (2014) Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries. Biotechniques 58(6):301–307. doi: 10.2144/000114298 Google Scholar
  90. 90.
    Valárik M, Bartoš J, Kovářová P, Kubaláková M, De Jong JH, Doležel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37(6):940–950. doi: 10.1111/j.1365-313X.2003.02010.x CrossRefPubMedGoogle Scholar
  91. 91.
    Yu H, Chao J, Patek D, Mujumdar R, Mujumdar S, Waggoner AS (1994) Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Res 22(15):3226–3232CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary B, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265(5181):2085–2088. doi: 10.1126/science.7522346 CrossRefPubMedGoogle Scholar
  93. 93.
    Spencer VA, Davie JR (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240(1):1–12. doi: 10.1016/S0378-1119(99)00405-9 CrossRefPubMedGoogle Scholar
  94. 94.
    Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239(1):219–224. doi: 10.1007/bf00281621 PubMedGoogle Scholar
  95. 95.
    Siroky J, Ruffini Castiglione M, Vyskot B (1998) DNA methylation patterns of Melandrium album chromosomes. Chromosome Res 6(6):441–446CrossRefPubMedGoogle Scholar
  96. 96.
    Castiglione MR, Cremonini R, Frediani M (2002) DNA methylation patterns on plant chromosomes. Caryologia 55(4):275–282. doi: 10.1080/00087114.2002.10797876 CrossRefGoogle Scholar
  97. 97.
    Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105(7):2415–2420. doi: 10.1073/pnas.0712168105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Václaclav Bačovský
    • 1
  • Roman Hobza
    • 1
  • Boris Vyskot
    • 1
    Email author
  1. 1.Department of Plant Developmental Genetics, Institute of BiophysicsCzech Academy of SciencesBrnoCzech Republic

Personalised recommendations