Technical Review: A Hitchhiker’s Guide to Chromosome Conformation Capture

  • Stefan GrobEmail author
  • Giacomo Cavalli
Part of the Methods in Molecular Biology book series (MIMB, volume 1675)


The introduction of chromosome conformation capture (3C) technologies boosted the field of 3D-genome research and significantly enhanced the available toolset to study chromosomal architecture. 3C technologies not only offer increased resolution compared to the previously dominant cytological approaches but also allow the simultaneous study of genome-wide 3D chromatin contacts, thereby enabling a candidate-free perspective on 3D-genome architecture. Since its introduction in 2002, 3C technologies evolved rapidly and now constitute a collection of tools, each with their strengths and pitfalls with respect to specific research questions. This chapter aims at guiding 3C novices through the labyrinth of potential applications of the various family members, hopefully providing a valuable basis for choosing the appropriate strategy for different research questions.

Key words

Chromosome Conformation Capture Chromosome Conformation Carbon Copy Hi-C ChIA-PET 3D genome organization HiChIP Capture Hi-C Targeted Chromatin Capture 


  1. 1.
    Hagège H, Klous P, Braem C et al (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733. doi: 10.1038/nprot.2007.243 CrossRefPubMedGoogle Scholar
  2. 2.
    Louwers M, Splinter E, van Driel R et al (2009) Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nat Protoc 4:1216–1229. doi: 10.1038/nprot.2009.113 CrossRefPubMedGoogle Scholar
  3. 3.
    Miele A, Dekker J (2008) Mapping cis-and trans-chromatin interaction networks using chromosome conformation capture (3C). In: Hancock R. (ed) The nucleus: volume 2: chromatin, transcription, envelope, proteins, dynamics, and imaging. Methods in molecular biology. Humana, Totowa 464:105–121. doi:  10.1007/978-1-60327-461-6_7
  4. 4.
    Dekker J (2006) The three “C” s of chromosome conformation capture: controls, controls, controls. Nat Methods 3:17–21. doi: 10.1038/nmeth823 CrossRefPubMedGoogle Scholar
  5. 5.
    Comet I, Schuettengruber B, Sexton T, Cavalli G (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber. Proc Natl Acad Sci U S A 108:2294–2299. doi: 10.1073/pnas.1002059108 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weber B, Jamge S, Stam M (2017) 3C analysis in Maize and Arabidopsis. Methods Mol BiolGoogle Scholar
  7. 7.
    Dekker J (2002) Capturing Chromosome Conformation. Science 295:1306–1311. doi: 10.1126/science.1067799 CrossRefPubMedGoogle Scholar
  8. 8.
    Louwers M, Bader R, Haring M et al (2009) Tissue- and expression level-specific chromatin looping at Maize b1 Epialleles. Plant Cell 21:832–842. doi: 10.1105/tpc.108.064329 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crevillen P, Sonmez C, Wu Z, Dean C (2012) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:140–148. doi: 10.1038/emboj.2012.324 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ariel F, Jegu T, Latrasse D et al (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396. doi: 10.1016/j.molcel.2014.06.011 CrossRefPubMedGoogle Scholar
  11. 11.
    Dostie J, Zhan Y, Dekker J (2007) Chromosome conformation capture carbon copy technology. Curr Protoc Mol Biol Chapter 21:Unit 21.14. doi:  10.1002/0471142727.mb2114s80
  12. 12.
    Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2:988–1002. doi: 10.1038/nprot.2007.116 CrossRefPubMedGoogle Scholar
  13. 13.
    Lajoie BR, van Berkum NL, Sanyal A, Dekker J (2009) My5C: web tools for chromosome conformation capture studies. Nat Methods 6:690–691. doi: 10.1038/nmeth1009-690 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309. doi: 10.1101/gr.5571506 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sauria ME, Phillips-Cremins JE, Corces VG, Taylor J (2015) HiFive: a tool suite for easy and efficient HiC and 5C data analysis. Genome Biol:1–10. doi: 10.1186/s13059-015-0806-y
  16. 16.
    Simonis M, Klous P, Homminga I et al (2009) High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat Methods 6:837–842. doi: 10.1038/nmeth.1391 CrossRefPubMedGoogle Scholar
  17. 17.
    Grob S, Schmid MW, Luedtke NW et al (2013) Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biol 14:R129. doi: 10.1186/gb-2013-14-11-r129 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sexton T, Kurukuti S, Mitchell JA et al (2012) Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat Protoc 7:1335–1350. doi: 10.1038/nprot.2012.071 CrossRefPubMedGoogle Scholar
  19. 19.
    Grob S (2017) Circular chromosome conformation capture in plants. Methods Mol Biol 1610:73–92. doi: 10.1007/978-1-4939-7003-2_6 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347. doi: 10.1038/ng1891 CrossRefPubMedGoogle Scholar
  21. 21.
    Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354. doi: 10.1038/ng1896 CrossRefPubMedGoogle Scholar
  22. 22.
    van de Werken HJG, Landan G, Holwerda SJB et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9:969–972. doi: 10.1038/nmeth.2173 CrossRefPubMedGoogle Scholar
  23. 23.
    Klein FA, Pakozdi T, Anders S et al (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics 31:3085–3091. doi: 10.1093/bioinformatics/btv335 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grob S, Grossniklaus U (2017) Chromatin Conformation Capture-based analysis of nuclear architecture. Methods Mol Biol 1456:15–32. doi:  10.1007/978-1-4899-7708-3_2
  26. 26.
    van Berkum NL, Lieberman-Aiden E, Williams L et al (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp:1–7. doi: 10.3791/1869
  27. 27.
    Kalhor R, Tjong H, Jayathilaka N et al (2011) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30:90–98. doi: 10.1038/nbt.2057 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Belton J-M, McCord RP, Gibcus JH et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276. doi: 10.1016/j.ymeth.2012.05.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Ramani V, Cusanovich DA, Hause RJ et al (2016) Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc 11:2104–2121. doi: 10.1038/nprot.2016.126 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. doi: 10.1126/science.1181369 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sexton T, Yaffe E, Kenigsberg E et al (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472. doi: 10.1016/j.cell.2012.01.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Korbel JO, Lee C (2013) Genome assembly and haplotyping with Hi-C. Nat Biotechnol 31:1099–1101. doi: 10.1038/nbt.2764 CrossRefPubMedGoogle Scholar
  33. 33.
    Kaplan N, Dekker J (2013) High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol 31:1143–1147. doi: 10.1038/nbt.2768 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Adey A, Patwardhan RP, Qiu R et al (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31:1119–1125. doi: 10.1038/nbt.2727 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lesne A, Riposo J, Roger P et al (2014) 3D genome reconstruction from chromosomal contacts. Nat Methods 11:1141–1143. doi: 10.1038/nmeth.3104 CrossRefPubMedGoogle Scholar
  36. 36.
    Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. doi: 10.1038/nature12593 CrossRefPubMedGoogle Scholar
  37. 37.
    Feng S, Cokus SJ, Schubert V et al (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707. doi: 10.1016/j.molcel.2014.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693. doi: 10.1016/j.molcel.2014.07.009 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang C, Liu C, Roqueiro D et al (2014) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–256. doi: 10.1101/gr.170332.113 CrossRefPubMedGoogle Scholar
  40. 40.
    Liu C, Wang C, Wang G et al (2016) Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 26:1057–1068. doi: 10.1101/gr.204032.116 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moissiard G, Cokus SJ, Cary J et al (2012) MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336:1448–1451. doi: 10.1126/science.1221472 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Veluchamy A, Jegu T, Ariel F et al (2016) LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis Genome. PLoS One 11:e0158936–e0158925. doi: 10.1371/journal.pone.0158936 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fullwood MJ, Han Y, Wei C-L et al (2010) Chromatin interaction analysis using paired-end tag sequencing. Curr Protoc Mol Biol Chapter 21:Unit 21.15.1–25. doi:  10.1002/0471142727.mb2115s89
  44. 44.
    Goh Y, Fullwood MJ, Poh HM et al (2012) Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) for mapping chromatin interactions and understanding transcription regulation. J Vis Exp. doi:  10.3791/3770
  45. 45.
    Mumbach MR, Rubin AJ, Flynn RA et al (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922. doi: 10.1038/nmeth.3999 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-α-bound human chromatin interactome. Nature 461:58–64. doi: 10.1038/nature08497 CrossRefGoogle Scholar
  47. 47.
    Dryden NH, Broome LR, Dudbridge F et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24:1854–1868. doi: 10.1101/gr.175034.114 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kolovos P, van de Werken HJ, Kepper N et al (2014) Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 7:10–17. doi: 10.1186/1756-8935-7-10 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mifsud B, Tavares-Cadete F, Young AN et al (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47:598–606. doi: 10.1038/ng.3286 CrossRefPubMedGoogle Scholar
  50. 50.
    Jäger R, Migliorini G, Henrion M et al (2015) Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun 6:6178. doi: 10.1038/ncomms7178 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu C, Weigel D (2015) Chromatin in 3D: progress and prospects for plants. Genome Biol 16:1–6. doi: 10.1186/s13059-015-0738-6 CrossRefGoogle Scholar
  52. 52.
    Grob S, Grossniklaus U (2017) Chromosome Conformation Capture-based studies reveal novel features of plant nuclear architecture. Curr Opin Plant Biol 36:149–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of Human GeneticsCentre National de la Recherche UMR9002MontpellierFrance

Personalised recommendations