Maize pp 41-59 | Cite as

Advances in Agrobacterium-mediated Maize Transformation

  • Heng Zhong
  • Sivamani Elumalai
  • Samson Nalapalli
  • Lee Richbourg
  • Anna Prairie
  • David Bradley
  • Shujie Dong
  • Xiujuan Jenny Su
  • Weining Gu
  • Tim Strebe
  • Liang Shi
  • Qiudeng QueEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1676)


One of the major limitations of maize transformation is the isolation of a large number of immature embryos using the time-consuming manual extraction method. In this article, we describe a novel bulk embryo extraction method for fast isolation of a large number of embryos suitable for both biolistic- and Agrobacterium-mediated transformation. Optimal gene delivery and tissue culture conditions are also described for achieving high efficiency in Agrobacterium-mediated maize transformation using phosphomannose isomerase (PMI) as a selectable marker.

Key words

Maize transformation Bulk embryo isolation Agrobacterium-mediated transformation Phosphomannose isomerase (PMI) gene Mannose selection Immature embryos Transgenic event Elite inbred line 



The authors thank colleagues Drs. Yoshimi Barron, Larry Zeph, Rene Quadt in reviewing the manuscript and giving valuable suggestions.

Competing Interests Statements: The authors are employed by Syngenta Crop Protection, LLC, a developer of transgenic trait products and relevant transformation technologies.


  1. 1.
    Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5. doi: 10.3389/fpls.2014.00379
  2. 2.
    Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621CrossRefPubMedGoogle Scholar
  3. 3.
    Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231CrossRefPubMedGoogle Scholar
  4. 4.
    Jones TL (2009) Maize tissue culture and transformation: the first 20 years. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer, Berlin, Heidelberg, pp 6–26Google Scholar
  5. 5.
    Wang K, Frame B, Ishida Y, Komari T (2009) Maize transformation. In: Bennetzen JL, Hake S (eds) Handbook of maize: genetics and genomics. Springer, New York, pp 609–639CrossRefGoogle Scholar
  6. 6.
    Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750CrossRefPubMedGoogle Scholar
  7. 7.
    Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 7:849–858PubMedGoogle Scholar
  8. 8.
    Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35CrossRefPubMedGoogle Scholar
  9. 9.
    Negrotto D, Jolley M, Beer S, Wench AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803CrossRefGoogle Scholar
  10. 10.
    Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D et al (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333CrossRefGoogle Scholar
  11. 11.
    Li X, Sandy L, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM et al (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ et al (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034CrossRefPubMedGoogle Scholar
  14. 14.
    Frame BR, Paque T, Wang K (2006) Maize (Zea mays L.) In: Wang K (ed) Agrobacterium protocols, Methods in molecular biology, vol 343, vol 1, 2nd edn. Humana Press, Totowa, NJ, pp 185–199CrossRefGoogle Scholar
  15. 15.
    Lai F-M, Privalle L, Mei K, Ghoshal D, Shen Y, Klucinec J et al (2011) Evaluation of the E. coli D-serine ammonia lyase gene (Ec. dsdA) for use as a selectable marker in maize transformation. In Vitro Cell Dev Biol Plant 47:467–479CrossRefGoogle Scholar
  16. 16.
    Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC III, Jones TJ, Zhao Z-Y (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777CrossRefPubMedGoogle Scholar
  17. 17.
    Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q (2015) Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 24:1017–1027CrossRefPubMedGoogle Scholar
  18. 18.
    Ye X, Williams EJ, Shen J, Johnson S, Lowe B, Radke S, Strickland S, Esser JA, Petersen MW, Gilbertson LA (2011) Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res 20:773–786CrossRefPubMedGoogle Scholar
  19. 19.
    Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org Cult 83:187–200CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Yin X, Yang A, Li G, Zhang J (2005) Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144:11–22CrossRefGoogle Scholar
  21. 21.
    Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305CrossRefPubMedGoogle Scholar
  22. 22.
    Ombori O, Muoma JVO, Machuka J (2013) Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell Tiss Org Cult 113:11–23CrossRefGoogle Scholar
  23. 23.
    Valdez-Ortiz A, Merdina-Godoy S, Valverde ME, Paredes-Lo’pez O (2007) A transgenic tropical maize line generated by the direct transformation of the embryo-scutellum by A. tumefaciens. Plant Cell Tiss Org Cult 91:201–214CrossRefGoogle Scholar
  24. 24.
    Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K et al (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166CrossRefPubMedGoogle Scholar
  25. 25.
    Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. In: Wang K (ed) Methods in molecular biology. Agrobacterium protocols, vol 343, vol 1, 2nd edn. Humana, Totowa, NJ, pp 15–41Google Scholar
  26. 26.
    Zhi L, TeRonde S, Meyer S, Arling ML, Register JC III, Zhao Z-Y, Jones TJ, Anand A (2015) Effect of Agrobacterium strain and plasmid copy nuber on transfromation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep 34:745–754CrossRefPubMedGoogle Scholar
  27. 27.
    Imayama T, Hiei Y, Ishida Y (2016) Agrobacterium bacterium to be used in plant transformation method. United States Patent Application Publication US20160083737Google Scholar
  28. 28.
    Yu G, Liu Y, Du W, Song J, Lin M, Xu L, Xiao F, Liu Y (2013) Optimization of Agrobacterium tumefaciens-mediated immature embryo transformation system and transformation of glyphosate-resistant gene 2mG2-EPSPS in maize (Zea mays L.) J Integr Agric 12:2134–2142CrossRefGoogle Scholar
  29. 29.
    Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 87:233–243CrossRefGoogle Scholar
  30. 30.
    Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20:57–66CrossRefGoogle Scholar
  31. 31.
    Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B et al (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Physiol. doi: 10.1105/tpc.16.00124
  32. 32.
    Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim S-G, Kim S-T, Cho S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. doi: 10.1038/ncomms12617 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E et al (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251CrossRefPubMedGoogle Scholar
  35. 35.
    Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Heng Zhong
    • 1
  • Sivamani Elumalai
    • 1
  • Samson Nalapalli
    • 1
  • Lee Richbourg
    • 1
  • Anna Prairie
    • 1
  • David Bradley
    • 1
  • Shujie Dong
    • 1
  • Xiujuan Jenny Su
    • 1
  • Weining Gu
    • 1
  • Tim Strebe
    • 1
  • Liang Shi
    • 1
  • Qiudeng Que
    • 1
    Email author
  1. 1.Syngenta Crop Protection, LLCDurhamUSA

Personalised recommendations