Advertisement

Human Cells as Platform to Produce Gamma-Carboxylated Proteins

  • Aline de Sousa BomfimEmail author
  • Marcela Cristina Corrêa de Freitas
  • Dimas Tadeu Covas
  • Elisa Maria de Sousa Russo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1674)

Abstract

The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

Key words

Gamma-carboxylated proteins Vitamin K cycle Human cell lines Coagulation factors Recombinant proteins 

Notes

Acknowledgments

The authors acknowledge São Paulo Research Foundation—FAPESP (2015/19017-6), Conselho Nacional de Pesquisa—CNPq (142406/2016-3), Centro de Pesquisa, Inovação e Difusão (CEPID), and National Institute of Science and Technology in Stem Cell and Cell Therapy—INCTC for financial support and Sandra Navarro for drawing the figures.

References

  1. 1.
    Fliedl L, Grillari J, Grillari-Voglauer R (2015) Human cell lines for the production of recombinant proteins: on the horizon. New Biotechnol 32:673–679. doi: 10.1016/j.nbt.2014.11.005 CrossRefGoogle Scholar
  2. 2.
    Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A 71:2730–2733. doi: 10.1073/pnas.71.7.2730 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stenflo J (1999) Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 9:59–88PubMedGoogle Scholar
  4. 4.
    Wallin R, Hutson SM (2004) Warfarin and the vitamin K-dependent γ-carboxylation system. Trends Mol Med 10:299–302. doi: 10.1016/j.molmed.2004.05.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Dahlbäck B, Villoutreix BO (2003) Molecular recognition in the protein C anticoagulant pathway. J Thromb Haemost 1:1525–1534CrossRefPubMedGoogle Scholar
  6. 6.
    Aktimur A, Gabriel MA, Gailani D, Toomey JR (2003) The factor IX gamma-carboxyglutamic acid (Gla) domain is involved in interactions between factor IX and factor XIa. J Biol Chem 278:7981–7987. doi: 10.1074/jbc.M212748200 CrossRefPubMedGoogle Scholar
  7. 7.
    Broze GJ (2001) Protein Z-dependent regulation of coagulation. Thromb Haemost 86:8–13PubMedGoogle Scholar
  8. 8.
    Melaragno MG, Fridell YW, Berk BC (1999) The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc Med 9:250–253CrossRefPubMedGoogle Scholar
  9. 9.
    Hoang QQ, Sicheri F, Howard AJ, Yang DSC (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980. doi: 10.1038/nature02079 CrossRefPubMedGoogle Scholar
  10. 10.
    Luo G, Ducy P, McKee MD et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81. doi: 10.1038/386078a0 CrossRefPubMedGoogle Scholar
  11. 11.
    HANSSON K, STENFLO J (2005) Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 3:2633–2648. doi: 10.1111/j.1538-7836.2005.01478.x CrossRefPubMedGoogle Scholar
  12. 12.
    Wallin R (2001) A molecular mechanism for genetic warfarin resistance in the rat. FASEB J 15:2542–2544. doi: 10.1096/fj.01-0337fje PubMedGoogle Scholar
  13. 13.
    Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93:1798–1808PubMedGoogle Scholar
  14. 14.
    Cain D, Hutson SM, Wallin R (1998) Warfarin resistance is associated with a protein component of vitamin K 2, 3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 80:128–133PubMedGoogle Scholar
  15. 15.
    Vatandoost J, Pakdaman SF (2016) The effects of influencing factors on γ-carboxylation and expression of recombinant vitamin K dependent coagulation factors. J Biomed. doi: 10.17795/jmb-6077
  16. 16.
    Xiao W, Li CQ, Xiao XP, Lin FZ (2013) Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells. Genet Mol Res 12:6813–6824. doi: 10.4238/2013.December.16.7 CrossRefPubMedGoogle Scholar
  17. 17.
    do Amaral RLF, de Sousa Bomfim A, de Abreu-Neto MS et al (2016) Approaches for recombinant human factor IX production in serum-free suspension cultures. Biotechnol Lett 38:385–394. doi: 10.1007/s10529-015-1991-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Dadehbeigi N, Ostad SN, Faramarzi MA, Ghahremani MH (2008) Sex hormones affect the production of recombinant factor IX in CHO and HEK-293 cell lines. Biotechnol Lett 30:1909–1912. doi: 10.1007/s10529-008-9774-6 CrossRefPubMedGoogle Scholar
  19. 19.
    de Sousa Bomfim A, Cristina Corrêa de Freitas M, Picanço-Castro V et al (2016) Human cell lines: a promising alternative for recombinant FIX production. Protein Expr Purif 121:149–156. doi: 10.1016/j.pep.2015.11.023 CrossRefPubMedGoogle Scholar
  20. 20.
    Berkner KL (1993) Expression of recombinant vitamin K-dependent proteins in mammalian cells: factors IX and VII. Methods Enzymol 222:450–477CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. doi: 10.1016/j.biotechadv.2011.08.022 CrossRefPubMedGoogle Scholar
  22. 22.
    Rose T, Winkler K, Brundke E et al (2008) Alternative strategies and new cell lines for high-level production of biopharmaceuticals. In: Knäblein J (ed) Modern biopharmaceuticals: design, development and optimization. Wiley, Weinheim, pp 761–777Google Scholar
  23. 23.
    Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84:147–153. doi: 10.1016/j.pep.2012.04.023 CrossRefPubMedGoogle Scholar
  24. 24.
    Kaufman RJ, Wasley LC, Furie BC et al (1986) Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells. J Biol Chem 261:9622–9628PubMedGoogle Scholar
  25. 25.
    Wajih N, Hutson SM, Owen J, Wallin R (2005) Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle. J Biol Chem 280:31603–31607. doi: 10.1074/jbc.M505373200 CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar SR (2015) Industrial production of clotting factors: challenges of expression, and choice of host cells. Biotechnol J 10:995–1004. doi: 10.1002/biot.201400666 CrossRefPubMedGoogle Scholar
  27. 27.
    Busby S, Kumar A, Joseph M et al (1985) Expression of active human factor IX in transfected cells. Nature 316:271–273. doi: 10.1038/316271a0 CrossRefPubMedGoogle Scholar
  28. 28.
    Messier TL, Pittman DD, Long GL et al (1991) Cloning and expression in COS-1 cells of a full-length cDNA encoding human coagulation factor X. Gene. doi: 10.1016/0378-1119(91)90141-W
  29. 29.
    De La Salle H, Altenburger W, Elkaim R et al (1985) Active gamma-carboxylated factor IX expressed using recombinant DNA techniques. Nature 316:268–270CrossRefPubMedGoogle Scholar
  30. 30.
    de Castilho Fernandes A, Fontes A, Gonsales N et al (2011) Stable and high-level production of recombinant factor IX in human hepatic cell line. Biotechnol Appl Biochem 58:243–249. doi: 10.1002/bab.32 CrossRefPubMedGoogle Scholar
  31. 31.
    Enjolras N, Dargaud Y, Pérot E et al (2012) Human hepatoma cell line HuH-7 is an effective cellular system to produce recombinant factor IX with improved post-translational modi fi cations. Thromb Res 130:266–273CrossRefGoogle Scholar
  32. 32.
    Grinnell BW, Walls JD, Marks C et al (1990) Gamma-carboxylated isoforms of recombinant human protein S with different biologic properties. Blood 76:2546–2554PubMedGoogle Scholar
  33. 33.
    Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72. doi: 10.1099/0022-1317-36-1-59 CrossRefPubMedGoogle Scholar
  34. 34.
    Blostein M, Cuerquis J, Landry S, Galipeau J (2008) The carboxylation efficiency of the vitamin K-dependent clotting factors: studies with factor IX. Haemophilia 14:1063–1068. doi: 10.1111/j.1365-2516.2008.01828.x CrossRefPubMedGoogle Scholar
  35. 35.
    Spencer HT, Denning G, Gautney RE et al (2011) Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 19:302–309. doi: 10.1038/mt.2010.239 CrossRefPubMedGoogle Scholar
  36. 36.
    Osborn JE, Walker DL (1968) Enhancement of infectivity of murine cytomegalovirus in vitro by centrifugal inoculation. J Virol 2:853–858PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yan R, Zhang Y, Cai D et al (2015) Spinoculation enhances HBV infection in NTCP-reconstituted hepatocytes. PLoS One 10:e0129889–e0129889. doi: 10.1371/journal.pone.0129889 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wajih N, Owen J, Wallin R (2008) Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection. Thromb Res 122:405–410. doi: 10.1016/j.thromres.2007.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cribbs AP, Kennedy A, Gregory B, Brennan FM (2013) Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol 13:98. doi: 10.1186/1472-6750-13-98 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Segura MM, Mangion M, Gaillet B, Garnier A (2013) New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 13:987–1011. doi: 10.1517/14712598.2013.779249 CrossRefPubMedGoogle Scholar
  41. 41.
    Reed SE, Staley EM, Mayginnes JP et al (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138:85–98. doi: 10.1016/j.jviromet.2006.07.024 CrossRefPubMedGoogle Scholar
  42. 42.
    Segura MM, Garnier A, Durocher Y et al (2010) New protocol for lentiviral vector mass production. Methods Mol Biol 614:39–52CrossRefPubMedGoogle Scholar
  43. 43.
    Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K (2015) Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation. Bioprocess Biosyst Eng 38:1495–1507. doi: 10.1007/s00449-015-1392-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Aline de Sousa Bomfim
    • 1
    • 2
    Email author
  • Marcela Cristina Corrêa de Freitas
    • 1
  • Dimas Tadeu Covas
    • 1
    • 3
  • Elisa Maria de Sousa Russo
    • 1
    • 2
  1. 1.Center for Cell-based Therapy CTC, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations