Bioreactor-Based Production of Glycoproteins in Plant Cell Suspension Cultures

  • Tanja Holland
  • Johannes Felix Buyel
Part of the Methods in Molecular Biology book series (MIMB, volume 1674)


Recombinant glycoproteins such as monoclonal antibodies have a major impact on modern healthcare systems, e.g., as the active pharmaceutical ingredients in anticancer drugs. A specific glycan profile is often necessary to achieve certain desirable activities, such as the effector functions of an antibody, receptor binding or a sufficient serum half-life. However, many expression systems produce glycan profiles that differ substantially from the preferred form (usually the form found in humans) or produce a diverse array of glycans with a range of in vivo activities, thus necessitating laborious and costly separation and purification processes. In contrast, protein glycosylation in plant cells is much more homogeneous than other systems, with only one or two dominant forms. Additionally, these glycan profiles tend to remain stable when the process and cultivation conditions are changed, making plant cells an ideal expression system to produce recombinant glycoproteins with uniform glycan profiles in a consistent manner. This chapter describes a protocol that uses fermentations using plant cell cultures to produce glycosylated proteins using two different types of bioreactors, a classical autoclavable STR 3-L and a wave reactor.

Key words

Plant cell culture Protein glycosylation Stirred tank reactor Cultivation conditions Process monitoring 



Controller output for the oxygen control loop


Dissolved oxygen


Dry weight


Fresh weight


Oxygen uptake rate


Packed cell volume


Room temperature


Stirred tank reactor


Volume per volume and minutes



The authors acknowledge Dr. Richard M Twyman for editorial assistance. This work was funded in part the Fraunhofer-Gesellschaft Internal Programs under Grant No. Attract 125-600164. The authors have no conflict of interest to declare.


  1. 1.
    Nasto B (2007) Biotech at the beauty counter. Nat Biotechnol 25(6):617–619CrossRefPubMedGoogle Scholar
  2. 2.
    Vojcic L, Pitzler C, Korfer G, Jakob F, Ronny M, Maurer KH, Schwaneberg U (2015) Advances in protease engineering for laundry detergents. New Biotechnol 32(6):629–634. doi: 10.1016/j.nbt.2014.12.010 CrossRefGoogle Scholar
  3. 3.
    Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587(8):1155–1163. doi: 10.1016/j.febslet.2012.12.019 CrossRefPubMedGoogle Scholar
  4. 4.
    Schuster AC, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M (2016) Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8. doi: 10.1093/aobpla/plw027
  5. 5.
    Spiegel H, Stöger E, Twyman RM, Buyel JF (2016) Current status and perspectives of the molecular farming landscape. In: Kermode AR (ed) Molecular pharming: applications, challenges and emerging areas. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Buyel JF How plants can contribute to the supply of anti-cancer compounds. In: Malik S (ed) Biotechnoloy and production of anti-cancer compounds. Springer, BerlinGoogle Scholar
  7. 7.
    Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8(12):970–976. doi: 10.1038/nri2438 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D (2015) Plant-based oral delivery of beta-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol J 13(8):1033–1040. doi: 10.1111/pbi.12366 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen LQ, Drake MR, Resch MG, Greene ER, Himmel ME, Chaffey PK, Beckham GT, Tan ZP (2014) Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proc Natl Acad Sci U S A 111(21):7612–7617. doi: 10.1073/pnas.1402518111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hayes JM, Cosgrave EF, Struwe WB, Wormald M, Davey GP, Jefferis R, Rudd PM (2014) Glycosylation and Fc receptors. Curr Top Microbiol Immunol 382:165–199. doi: 10.1007/978-3-319-07911-0_8 PubMedGoogle Scholar
  11. 11.
    Sareneva T, Pirhonen J, Cantell K, Julkunen I (1995) N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. Biochem J 308(Pt 1):9–14CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635. doi: 10.1002/jps.20319 CrossRefPubMedGoogle Scholar
  13. 13.
    Strasser R (2016) Plant protein glycosylation. Glycobiology. doi: 10.1093/glycob/cww023
  14. 14.
    Fischer R, Buyel JF, Holland T, Sack M, Schillberg S, Twyman RM Glyco-engineering of plant-based expression systems. In: Reichl U (ed) Glycobiotechnology, vol 10. Advances in biochemical engineering/biotechnology. Springer, BerlinGoogle Scholar
  15. 15.
    Tuse D (2011) Safety of plant-made pharmaceuticals product development and regulatory considerations based on case studies of two autologous human cancer vaccines. Hum Vaccines 7(3):322–330. doi: 10.4161/Hv.7.3.14213 CrossRefGoogle Scholar
  16. 16.
    Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587. doi: 10.1111/j.1467-7652.2009.00497.x CrossRefPubMedGoogle Scholar
  17. 17.
    Mor TS (2015) Molecular pharming's foot in the FDA’s door: protalix’s trailblazing story. Biotechnol Lett 37(11):2147–2150. doi: 10.1007/s10529-015-1908-z CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bethencourt V (2009) Virus stalls Genzyme plant. Nat Biotechnol 27(8):681–681. doi: 10.1038/nbt0809-681a CrossRefGoogle Scholar
  19. 19.
    Mavituna F, Park JM (1987) Size distribution of plant cell aggregates in batch culture. Chem Eng J 35(1):B9–B14. doi: 10.1016/0300-9467(87)80045-X CrossRefGoogle Scholar
  20. 20.
    Nagata T, Hasezawa S, Depicker A (2013) Tobacco BY-2 Cells. Springer, BerlinGoogle Scholar
  21. 21.
    Holland T, Blessing D, Hellwig S, Sack M (2013) The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology. Biotechnol J 8(10):1231–1240. doi: 10.1002/biot.201300125 PubMedGoogle Scholar
  22. 22.
    Holland T (2013) Development of plant suspension cultures with regard to industrial production of biopharmaceuticals, Dissertation/Ph.D. thesis. Aachen, RWTH Aachen University. Google Scholar
  23. 23.
    Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297. doi: 10.3389/fpls.2016.00297 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289. doi: 10.1002/bit.22800 CrossRefPubMedGoogle Scholar
  25. 25.
    Trexler MM, McDonald KA, Jackman AP (2005) A cyclical semicontinuous process for production of human alpha 1-antitrypsin using metabolically induced plant cell suspension cultures. Biotechnol Prog 21(2):321–328. doi: 10.1021/bp0498692 CrossRefPubMedGoogle Scholar
  26. 26.
    Hooker BS, Lee JM, An G (1990) Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnol Bioeng 35(3):296–304. doi: 10.1002/bit.260350311 CrossRefPubMedGoogle Scholar
  27. 27.
    Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15(3):319–335. doi: 10.1021/bp990042v CrossRefPubMedGoogle Scholar
  28. 28.
    Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. doi: 10.1007/10_2008_15 PubMedGoogle Scholar
  29. 29.
    Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96(5):914–923. doi: 10.1002/bit.21187 CrossRefPubMedGoogle Scholar
  30. 30.
    Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590. doi: 10.1111/j.1467-7652.2007.00263.x CrossRefPubMedGoogle Scholar
  31. 31.
    Wen SW, Jun He B, Liang H, Sun S (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J Biotechnol 50(2):225–233. doi: 10.1016/0168-1656(96)01568-4 CrossRefGoogle Scholar
  32. 32.
    McDonald KA, Hong LM, Trombly DM, Xie Q, Jackman AP (2005) Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog 21(3):728–734. doi: 10.1021/bp0496676 CrossRefPubMedGoogle Scholar
  33. 33.
    Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983) Rotating drum fermentor for plant cell suspension cultures. Biotechnol Bioeng 25(10):2359–2370. doi: 10.1002/bit.260251007 CrossRefPubMedGoogle Scholar
  34. 34.
    Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29(3):278–299. doi: 10.1016/j.biotechadv.2011.01.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30(2):398–409. doi: 10.1016/j.biotechadv.2011.07.016 CrossRefPubMedGoogle Scholar
  36. 36.
    WW S, Arias R (2003) Continuous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95(1):13–20. doi: 10.1016/S1389-1723(03)80142-1 CrossRefGoogle Scholar
  37. 37.
    De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M (2006) A high-rate perfusion bioreactor for plant cells. Biotechnol Bioeng 95(6):1126–1137. doi: 10.1002/bit.21077 CrossRefPubMedGoogle Scholar
  38. 38.
    Chmiel H (2011) Bioprozesstechnik, vol 3. Springer, Spektrum. doi: 10.1007/978-3-8274-2477-8 CrossRefGoogle Scholar
  39. 39.
    van Gulik WM, ten Hoopen HJ, Heijnen JJ (2001) The application of continuous culture for plant cell suspensions. Enzym Microb Technol 28(9–10):796–805CrossRefGoogle Scholar
  40. 40.
    Miller RA, Shyluk JP, Gamborg OL, Kirkpatrick JW (1968) Phytostat for continuous culture and automatic sampling of plant-cell suspensions. Science 159(3814):540–542CrossRefPubMedGoogle Scholar
  41. 41.
    Winkler M (1990) Chemical engineering problems in biotechnology, vol 1. Springer, AmsterdamGoogle Scholar
  42. 42.
    Huang TK, Plesha MA, McDonald KA (2010) Semicontinuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnol Bioeng 106(3):408–421. doi: 10.1002/bit.22713 PubMedGoogle Scholar
  43. 43.
    Hogue RS, Lee JM, An G (1990) Production of a foreign protein product with genetically modified plant cells. Enzym Microb Technol 12(7):533–538CrossRefGoogle Scholar
  44. 44.
    Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83(5):809–823. doi: 10.1007/s00253-009-2049-x CrossRefPubMedGoogle Scholar
  45. 45.
    Schmale K, Rademacher T, Fischer R, Hellwig S (2006) Towards industrial usefulness - cryo-cell-banking of transgenic BY-2 cell cultures. J Biotechnol 124(1):302–311. doi: 10.1016/j.jbiotec.2006.01.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  2. 2.Institute for Molecular Biotechnology, RWTH Aachen UniversityAachenGermany

Personalised recommendations