Advertisement

Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae

  • Erica J. Polleys
  • Catherine H. FreudenreichEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1672)

Abstract

Trinucleotide repeats are common in the human genome and can undergo changes in repeat length. Expanded CAG repeats have been linked to over 14 human diseases and are considered hotspots for breakage and genomic rearrangement. Here, we describe two Saccharomyces cerevisiae based assays that evaluate the rate of chromosome breakage that occurs within a repeat tract (fragility), and a PCR-based assay to evaluate tract length changes (instability). The first fragility assay utilizes end-loss and subsequent telomere addition as the main mode of repair of a yeast artificial chromosome (YAC). The second fragility assay relies on the fact that a chromosomal break stimulates recombination-mediated repair. In addition to understanding the role of fragility at repetitive DNA sequences, both assays can be modified to evaluate instability of a CAG repeat using a PCR-based assay. All three assays have been essential in understanding the genetic mechanisms that cause chromosome breaks and tract-length changes at unstable repeats.

Key words

Chromosome break Fragility Stability Yeast artificial chromosome (YAC) CAG repeat 

Notes

Acknowledgments

Work in our laboratory is currently supported by grants from the National Institute of Health (GM105473) and National Science Foundation (MCB 1330743). We would like to thank past and present members of the C. H. Freudenreich and V.A. Zakian labs for their contributions to the development of these assays.

References

  1. 1.
    Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 50(2):142–167. doi: 10.3109/10409238.2014.999192. PubMed PMID: 25608779; PMCID: 4454471CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11(11):786–799. doi: 10.1038/nrg2828. PubMed PMID: 20953213; PMCID: 3175376CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM (2009) Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 35(1):82–92. doi: 10.1016/j.molcel.2009.06.017. PubMed PMID: 19595718; PMCID: 2722067CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dixon MJ, Bhattacharyya S, Lahue RS (2004) Genetic assays for triplet repeat instability in yeast. Methods Mol Biol 277:29–45. doi: 10.1385/1-59259-804-8:029. PubMedPubMedGoogle Scholar
  5. 5.
    Schulz VP, Zakian VA (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76(1):145–155. PubMedCrossRefPubMedGoogle Scholar
  6. 6.
    Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH (2003) Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol Cell Biol 23(21):7849–7860. Epub 2003/10/16. PubMed PMID: 14560028; PMCID: 207578CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, Dujon B, Freudenreich CH, Richard GF (2009) SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16(2):159–167. doi: 10.1038/nsmb.1544. PubMed Epub 2009/01/13. doi: nsmb.1544 [pii]
  8. 8.
    Zhang H, Freudenreich CH. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell. 2007;27(3):367–379. doi:  10.1016/j.molcel.2007.06.012. PubMed PMID: 17679088; PMCID: 2144737
  9. 9.
    Cherng N, Shishkin AA, Schlager LI, Tuck RH, Sloan L, Matera R, Sarkar PS, Ashizawa T, Freudenreich CH, Mirkin SM (2011) Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci U S A 108(7):2843–2848. doi: 10.1073/pnas.1009409108. PubMed PMID: 21282659; PMCID: 3041125CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu S, Wang G, Bacolla A, Zhao J, Spitser S, Vasquez KM (2015) Short inverted repeats are hotspots for genetic instability: relevance to cancer genomes. Cell Rep. doi: 10.1016/j.celrep.2015.02.039. PubMed
  11. 11.
    Pluta AF, Zakian VA (1989) Recombination occurs during telomere formation in yeast. Nature 337(6206):429–433. doi: 10.1038/337429a0. PubMedCrossRefPubMedGoogle Scholar
  12. 12.
    Chen C, Kolodner RD (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23(1):81–85. doi: 10.1038/12687. PubMedCrossRefPubMedGoogle Scholar
  13. 13.
    Freudenreich CH, Stavenhagen JB, Zakian VA (1997) Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol 17(4):2090–2098. PubMed PMID: 9121457; PMCID: 232056CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Su XA, Dion V, Gasser SM, Freudenreich CH (2015) Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes Dev 29(10):1006–1017. doi: 10.1101/gad.256404.114. PubMed PMID: 25940904; PMCID: 4441049CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Freudenreich CH, Kantrow SM, Zakian VA (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279(5352):853–856. PubMedCrossRefPubMedGoogle Scholar
  16. 16.
    Balakumaran BS, Freudenreich CH, Zakian VA (2000) CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum Mol Genet 9(1):93–100. PubMedCrossRefPubMedGoogle Scholar
  17. 17.
    Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145(5):678–691. doi: 10.1016/j.cell.2011.04.015. PubMed PMID: 21620135; PMCID: 3129610CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dunham MJ, Dunham MJ, Gartenberg MR, Brown GW (2015) Methods in yeast genetics and genomics : a Cold Spring Harbor Laboratory course manual/Maitreya J. Dunham, University of Washington, Marc R. Gartenberg, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Grant W. Brown, University of Toronto. 2015 edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. xvii, 233 pagesGoogle Scholar
  19. 19.
    Hall BM, Ma CX, Liang P, Singh KK (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25(12):1564–1565. doi: 10.1093/bioinformatics/btp253. PubMed PMID: 19369502; PMCID: 2687991CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20(1):4–17. doi: 10.1006/meth.1999.0901. PubMed PMID: 10610800; PMCID: 2932672CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyTufts UniversityMedfordUSA

Personalised recommendations