Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

  • Maja Rennig
  • Daniel O. Daley
  • Morten H. H. NørholmEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1671)


Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can be fused at the 3′-end with a translational coupling element and an antibiotic resistance gene. Highly expressed target genes can then be selected using a fast and simple whole cell survival assay in the presence of high antibiotic concentrations. Herein we show that the system can be used to select highly expressing clones from libraries sampling translation initiation sites.

Key words

Gene expression Protein production optimization Selection Library screening Antibiotic resistance Translational coupling 


  1. 1.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli : advances and challenges. Front Microbiol 5:1–17Google Scholar
  2. 2.
    Aksoy S, Squires CL, Squires C (1984) Translational coupling of the trpB and trpA genes in the Escherichia coli tryptophan operon. J Bacteriol 157:363–367PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rex G, Surin B, Besse G et al (1994) The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. J Biol Chem 269:18118–18127PubMedGoogle Scholar
  4. 4.
    Mendez-Perez D, Gunasekaran S, Orler VJ et al (2012) A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli. Metab Eng 14:298–305CrossRefPubMedGoogle Scholar
  5. 5.
    Massey-Gendel E, Zhao A, Boulting G et al (2009) Genetic selection system for improving recombinant membrane protein expression in E. coli. Protein Sci 18:372–383CrossRefPubMedGoogle Scholar
  6. 6.
    Gul N, Linares DM, Ho FY et al (2014) Evolved Escherichia coli strains for amplified, functional expression of membrane proteins. J Mol Biol 426:136–149CrossRefPubMedGoogle Scholar
  7. 7.
    Tan R, Jiang X, Jackson A et al (2003) E coli selection of human genes encoding secreted and membrane proteins based on cDNA fusions to a leaderless β-lactamase reporter. Genome Res 13:1938–1943PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mirzadeh K, Martínez V, Toddo S et al (2015) Enhanced protein production in Escherichia coli by optimization of cloning scars at the vector–coding sequence junction. ACS Synth Biol 4:959–965CrossRefPubMedGoogle Scholar
  9. 9.
    Mirzadeh K, Toddo S, Nørholm MHH et al (2016) Codon optimizing for increased membrane protein production: a minimalist approach. In: Heterologous expression of membrane proteins, Methods and protocols, methods in molecular biology. Springer Science+Business Media, New York, pp 53–61CrossRefGoogle Scholar
  10. 10.
    Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28CrossRefPubMedGoogle Scholar
  11. 11.
    Cavaleiro AM, Kim SH, Seppälä S et al (2015) Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth Biol 4:1042–1046CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Maja Rennig
    • 1
  • Daniel O. Daley
    • 2
  • Morten H. H. Nørholm
    • 1
    Email author
  1. 1.Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800 Kgs. LyngbyDenmark
  2. 2.Department of Biochemistry and Biophysics, Center for Biomembrane ResearchStockholm UniversityStockholmSweden

Personalised recommendations