Advertisement

Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells

  • Toshifumi AsanoEmail author
  • Toru Ishizuka
  • Hiromu Yawo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1668)

Abstract

Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

Key words

Optical stimulation Channelrhodopsin Optogenetics Myogenesis Muscle contraction C2C12 

Notes

Acknowledgment

This work was supported by Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) research Fellow from JSPS and Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and Inochinoiro ALS Research Foundation.

References

  1. 1.
    Vanderburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268CrossRefGoogle Scholar
  2. 2.
    Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 115:2000–2009CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, Conn CA, Trujillo KA (2014) Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 16:711–718CrossRefPubMedGoogle Scholar
  4. 4.
    Hofmann S, Pette D (1994) Low-frequency stimulation of rat fast-twitch muscle enhances the expression of hexokinase II and both the translocation and expression of glucose transporter 4 (GLUT-4). Eur J Biochem 219:307–315CrossRefPubMedGoogle Scholar
  5. 5.
    Sketelj J, Leisner E, Gohlsch B, Škorjanc D, Pette D (1997) Specific impulse patterns regulate acetylcholinesterase activity in skeletal muscles of rats and rabbits. J Neurosci Res 47:49–57CrossRefPubMedGoogle Scholar
  6. 6.
    Thelen MH, Simonides WS, van Hardeveld C (1997) Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J 321:845–848CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, Vunjak-Novakovic G (2008) Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2:279–287CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Deyne PG (2000) Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279:C1801–C1811PubMedGoogle Scholar
  9. 9.
    Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283:C1557–C1565CrossRefPubMedGoogle Scholar
  10. 10.
    Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hupkes M, Jonsson MK, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MA, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ (2011) Epigenetics: DNA demethylation promotes skeletal myotube maturation. FASEB J 25:3861–3872CrossRefPubMedGoogle Scholar
  12. 12.
    Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE (2005) Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 288:H1620–H1626CrossRefPubMedGoogle Scholar
  13. 13.
    Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865CrossRefPubMedGoogle Scholar
  14. 14.
    Burch N, Arnold AS, Item F, Summermatter S, Brochmann Santana Santos G, Christe M, Boutellier U, Toigo M, Handschin C (2010) Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle. PLoS One 5:e10970CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nikolic N, Skaret Bakke S, Tranheim Kase E, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 7:e33203CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Silveira LR, Pilegaard H, Kusuhara K, Curi R, Hellsten Y (2006) The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1 α (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species. Biochim Biophys Acta 1763:969–976CrossRefPubMedGoogle Scholar
  17. 17.
    Asano T, Ishizuka T, Yawo H (2012) Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng 109:199–204CrossRefPubMedGoogle Scholar
  18. 18.
    Asano T, Ishizuka T, Morishima K, Yawo H (2015) Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep 5:8317CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266CrossRefPubMedGoogle Scholar
  20. 20.
    Yawo H, Asano T, Sakai S, Ishizuka T (2013) Optogenetic manipulation of neural and non–neural functions. Develop Growth Differ 55:474–490CrossRefGoogle Scholar
  21. 21.
    Pathak GP, Vrana JD, Tucker CL (2013) Optogenetic control of cell function using engineered photoreceptors. Biol Cell 105:59–72CrossRefPubMedGoogle Scholar
  22. 22.
    Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light–gated proton channel in green algae. Science 296:2395–2398CrossRefPubMedGoogle Scholar
  23. 23.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  25. 25.
    Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639CrossRefPubMedGoogle Scholar
  27. 27.
    Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature 466:622–626CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900CrossRefPubMedGoogle Scholar
  30. 30.
    Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang HZ, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753–760CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R (2008) Surface sites for engineering allosteric control in proteins. Science 322:438–442CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    YI W, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108CrossRefGoogle Scholar
  33. 33.
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y, Mushiake H, Ishizuka T, Yawo H (2010) Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS One 5:e12893CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Cell Biology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
  2. 2.Department of Developmental Biology and NeuroscienceTohoku University Graduate School of Life SciencesSendaiJapan

Personalised recommendations