Bisulfite Sequencing for DNA Methylation Analysis of Primary Muscle Stem Cells

  • Kohei Miyata
  • Masashi Naito
  • Tomoko Miyata
  • Sho Mokuda
  • Hiroshi AsaharaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1668)


In skeletal muscle, DNA methylation contributes to the suppression of gene expression in several biological processes and diseases. A protocol for the detection of methylated cytosine was thus established based on methylation-sensitive enzymes, immunoprecipitation, and bisulfite conversion. DNA methylation analysis, with bisulfite conversion and sequencing, enables the quantification of methylation at each single base position. Here, we describe a basic method of bisulfite sequencing that can be used to analyze local DNA methylation status to confirm genome-wide DNA methylation analysis or correlation of gene expression regulatory mechanisms.

Key words

Epigenetics DNA methylation Methylcytosine Bisulfite conversion Bisulfite sequencing analysis 


  1. 1.
    Zuo T, Tycko B, Liu TM et al (2009) Methods in DNA methylation profiling. Epigenomics 1:331–345CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bibikova M, Fan JB (2010) Genome-wide DNA methylation profiling. Wiley Interdiscip Rev Syst Biol Med 2:210–223CrossRefPubMedGoogle Scholar
  3. 3.
    Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29:E65CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leontiou CA, Hadjidaniel MD, Mina P et al (2015) Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-invasive prenatal testing. PLoS One 10:e0135058CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang AS, Estécio MR, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431CrossRefPubMedGoogle Scholar
  8. 8.
    Wada MR, Inagawa-Ogashiwa M, Shimizu S et al (2002) Generation of different fates from multipotent muscle stem cells. Development 129:2987–2995PubMedGoogle Scholar
  9. 9.
    Hashimoto N, Murase T, Kondo S et al (2004) Muscle reconstitution by muscle satellite cell descendants with stem cell-like properties. Development 131:5481–5490CrossRefPubMedGoogle Scholar
  10. 10.
    Mozzetta C, Consalvi S, Saccone V et al (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 5:626–639CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albini S, Coutinho Toto P, Dall'Agnese A et al (2015) Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Rep 16:1037–1050CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Kohei Miyata
    • 1
  • Masashi Naito
    • 2
  • Tomoko Miyata
    • 1
  • Sho Mokuda
    • 1
  • Hiroshi Asahara
    • 1
    • 2
    Email author
  1. 1.Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa JollaUSA
  2. 2.Department of Systems Bio MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations