Advertisement

FISH-Based Assays for Detecting Genomic (Chromosomal) Mosaicism in Human Brain Cells

  • Yuri B. Yurov
  • Svetlana G. Vorsanova
  • Ilia V. Soloviev
  • Alexei M. Ratnikov
  • Ivan Y. Iourov
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

Genomic or chromosomal mosaicism in human brain cells is considered a source for neuronal diversity and a mechanism for neuropsychiatric diseases. However, there is still a lack of consensus concerning the extent and effects of mosaic chromosome abnormalities (i.e., aneuploidy) in the normal and diseased human brain. To solve this problem, a need for detailed description of single-cell techniques for chromosomal analysis of human brain cells appears to exist. In this chapter, FISH-based techniques for detecting genomic (chromosomal) mosaicism in the human brain are described.

Key words

Human brain Chromosomal mosaicism Chromosome Aneuploidy Fluorescence in situ hybridization Single cell Molecular cytogenetics 

Notes

Acknowledgments

Professor YB Yurov is supported by a grant from the Russian Science Foundation (project #14-35-00060) at Moscow State University of Psychology and Education. Professors SG Vorsanova and IY Iourov are supported by a grant from the Russian Science Foundation (project #14-15-00411) at Mental Health Research Center. The study of the Alzheimer disease brain is supported by the ERA.Net RUS Plus program.

References

  1. 1.
    Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191CrossRefPubMedGoogle Scholar
  2. 2.
    Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J (2006) Aneuploidy in the normal and diseased brain. Cell Mol Life Sci 63:2626–2641CrossRefPubMedGoogle Scholar
  3. 3.
    Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13(6):477–488CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bakker B, van den Bos H, Lansdorp PM, Foijer F (2015) How to count chromosomes in a cell: an overview of current and novel technologies. BioEssays 37(5):570–577CrossRefPubMedGoogle Scholar
  5. 5.
    Harbom LJ, Chronister WD, McConnell MJ (2016) Single neuron transcriptome analysis can reveal more than cell type classification: does it matter if every neuron is unique? BioEssays 38(2):157–161CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq 2(1):6–15CrossRefPubMedGoogle Scholar
  7. 7.
    Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yurov YB, Vorsanova SG, Iourov IY (eds) (2013) Human interphase chromosomes: biomedical aspects. Springer, New YorkGoogle Scholar
  9. 9.
    Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37(1 Suppl):194–209CrossRefPubMedGoogle Scholar
  10. 10.
    Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25(9):2176–2180CrossRefPubMedGoogle Scholar
  11. 11.
    Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A 102(17):6143–6147CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53(3):385–390CrossRefPubMedGoogle Scholar
  13. 13.
    Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosom Res 14(3):223–229CrossRefGoogle Scholar
  14. 14.
    Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J (2008) Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 507(6):1944–1951CrossRefPubMedGoogle Scholar
  15. 15.
    Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220CrossRefPubMedGoogle Scholar
  16. 16.
    Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J (2010) Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 518(19):3981–4000CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Devalle S, Sartore RC, Paulsen BS, Borges HL, Martins RA, Rehen SK (2012) Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci 6:36CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98(23):13361–13366CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yurov YB, Vorsanova SG, Iourov IY (2010) Ontogenetic variation of the human genome. Curr Genomics 11(6):420–425CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 23(Suppl 1):S186–S190CrossRefPubMedGoogle Scholar
  22. 22.
    Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, Kolotii AD, Monakchov VV, Uranova NA, Vostrikov VM, Soloviev IV, Liehr T (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98(1–3):139–147CrossRefPubMedGoogle Scholar
  23. 23.
    Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa S, Takahashi H, Kakita A, Kuwano R, Nawa H (2015) Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 8:46CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27(26):6859–6867CrossRefPubMedGoogle Scholar
  25. 25.
    Iourov IY, Vorsanova SG, Yurov YB (2011) Genomic landscape of the Alzheimer’s disease brain: chromosome instability—aneuploidy, but not tetraploidy—mediates neurodegeneration. Neurodegener Dis 8(1–2):35–37PubMedGoogle Scholar
  26. 26.
    Yurov YB, Vorsanova SG, Iourov IY (2011) The DNA replication stress hypothesis of Alzheimer’s disease. ScientificWorldJournal 11:2602–2612CrossRefPubMedGoogle Scholar
  27. 27.
    Arendt T, Brückner MK, Lösche A (2015) Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability. Acta Neuropathol 130(4):501–510CrossRefPubMedGoogle Scholar
  28. 28.
    Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7:20CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161(Pt A):83–94. doi: 10.1016/jmad2016.04.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Yang Y, Shepherd C, Halliday G (2015) Aneuploidy in Lewy body diseases. Neurobiol Aging 36(3):1253–1260CrossRefPubMedGoogle Scholar
  31. 31.
    Allen DM, van Praag H, Ray J, Weaver Z, Winrow CJ, Carter TA, Braquet R, Harrington E, Ried T, Brown KD, Gage FH, Barlow C (2001) Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev 15(5):554–566CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McConnell MJ, Kaushal D, Yang AH, Kingsbury MA, Rehen SK, Treuner K, Helton R, Annas EG, Chun J, Barlow C (2004) Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J Neurosci 24(37):8090–8096CrossRefPubMedGoogle Scholar
  33. 33.
    Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669CrossRefPubMedGoogle Scholar
  34. 34.
    Vorsanova SG, Yurov IY, Demidova IA, Voinova-Ulas VY, Kravets VS, Solov’ev IV, Gorbachevskaya NL, Yurov YB (2007) Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders. Neurosci Behav Physiol 37(6):553–558CrossRefPubMedGoogle Scholar
  35. 35.
    Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, Monakhov VV, Kolotii AD, Voinova-Ulas VY, Gorbachevskaya NL (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44(8):521–525CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Iourov IY, Yurov YB, Vorsanova SG (2008) Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism. Med Hypotheses 70(2):456CrossRefPubMedGoogle Scholar
  37. 37.
    Vorsanova SG, Voinova VY, Yurov IY, Kurinnaya OS, Demidova IA, Yurov YB (2010) Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders. Neurosci Behav Physiol 40(7):745–756CrossRefPubMedGoogle Scholar
  38. 38.
    Charney E (2012) Behavior genetics and postgenomics. Behav Brain Sci 35(5):331–358CrossRefPubMedGoogle Scholar
  39. 39.
    Yurov YB, Vorsanova SG, Iourov IY (2009) GIN’n’CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2:23CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Faggioli F, Wang T, Vijg J, Montagna C (2012) Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet 21(24):5246–5253CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T (2012) Changes in neuronal DNA content variation in the human brain during aging. Aging Cell 11(4):628–633CrossRefPubMedGoogle Scholar
  42. 42.
    Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16(11):672–684CrossRefPubMedGoogle Scholar
  43. 43.
    Andriani GA, Vijg J, Montagna C (2017) Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 161(Pt A):19–36. doi: 10.1016/jmad2016.03.007 CrossRefPubMedGoogle Scholar
  44. 44.
    Abruzzo MA, Mayer M, Jacobs PA (1985) Aging and aneuploidy: evidence for the preferential involvement of the inactive X chromosome. Cytogenet Cell Genet 39(4):275–278CrossRefPubMedGoogle Scholar
  45. 45.
    Russell LM, Strike P, Browne CE, Jacobs PA (2007) X chromosome loss and ageing. Cytogenet Genome Res 116(3):181–185CrossRefPubMedGoogle Scholar
  46. 46.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Chromosomal mosaicism goes global. Mol Cytogenet 1:26CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bushman DM, Chun J (2013) The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 24(4):357–369CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Iourov IY, Vorsanova SG, Yurov YB (2013) Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139(3):181–188CrossRefPubMedGoogle Scholar
  49. 49.
    Insel TR (2014) Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 19(2):156–158CrossRefPubMedGoogle Scholar
  50. 50.
    Fickelscher I, Starke H, Schulze E, Ernst G, Kosyakova N, Mkrtchyan H, MacDermont K, Sebire N, Liehr T (2007) A further case with a small supernumerary marker chromosome (sSMC) derived from chromosome 1—evidence for high variability in mosaicism in different tissues of sSMC carriers. Prenat Diagn 27(8):783–785CrossRefPubMedGoogle Scholar
  51. 51.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 9(7):452–465CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Iourov IY, Vorsanova SG, Yurov YB (2010) Somatic genome variations in health and disease. Curr Genomics 11(6):387–396CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hultén MA, Jonasson J, Iwarsson E, Uppal P, Vorsanova SG, Yurov YB, Iourov IY (2013) Trisomy 21 mosaicism: we may all have a touch of down syndrome. Cytogenet Genome Res 139(3):189–192CrossRefPubMedGoogle Scholar
  54. 54.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubský D, Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-Wakker K, Guryev V, den Dunnen WF, Foijer F, Tatché MC, Boddeke HW, Lansdorp PM (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17:116CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R (1996) High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 97(3):390–398CrossRefPubMedGoogle Scholar
  58. 58.
    Liehr T (ed) (2009/2016) Fluorescence in situ hybridization (FISH)—application guide, 1st & 2nd edn. Springer Protocols. Springer, HeidelbergGoogle Scholar
  59. 59.
    Iourov IY, Vorsanova SG, Yurov YB (2016) Detection of nuclear DNA by interphase fluorescence in situ hybridization. Encyclopedia Anal Chem: 1–12Google Scholar
  60. 60.
    Iourov IY, Vorsanova SG, Pellestor F, Yurov YB (2006) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132PubMedGoogle Scholar
  61. 61.
    Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002) Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9(4):335–339PubMedGoogle Scholar
  62. 62.
    Iourov IY, Liehr T, Vorsanova SG, Yurov YB (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24(4):415–417CrossRefPubMedGoogle Scholar
  63. 63.
    Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53(3):401–408CrossRefPubMedGoogle Scholar
  64. 64.
    Iourov IY (2017) Quantitative fluorescence in situ hybridization (QFISH). Methods Mol Biol 1541:143–149CrossRefPubMedGoogle Scholar
  65. 65.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23(32):10454–10462PubMedGoogle Scholar
  67. 67.
    Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S, Mutoh T, Rehen SK, Chun J (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32(46):16213–16222CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46(1):125–135CrossRefPubMedGoogle Scholar
  69. 69.
    Granic A, Potter H (2013) Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One 8(4):e60718CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T (2015) Cohesion and the aneuploid phenotype in Alzheimer’s disease: a tale of genome instability. Neurosci Biobehav Rev 55:365–374CrossRefPubMedGoogle Scholar
  71. 71.
    Iourov IY, Vorsanova SG, Zelenova MA, Korostelev SA, Yurov YB (2015) Genomic copy number variation affecting genes involved in the cell cycle pathway: implications for somatic mosaicism. Int J Genomics 2015:757680CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY (2010) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11(6):440–446CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Martin CL, Warburton D (2015) Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu Rev Genomics Hum Genet 16:309–326CrossRefPubMedGoogle Scholar
  74. 74.
    Yurov YB, Iourov IY, Vorsanova SG (2009) Neurodegeneration mediated by chromosome instability suggests changes in strategy for therapy development in ataxia-telangiectasia. Med Hypotheses 73(6):1075–1076CrossRefPubMedGoogle Scholar
  75. 75.
    Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177(1):15–20CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yuri B. Yurov
    • 1
    • 2
    • 3
  • Svetlana G. Vorsanova
    • 1
    • 2
    • 3
  • Ilia V. Soloviev
    • 1
  • Alexei M. Ratnikov
    • 1
    • 3
  • Ivan Y. Iourov
    • 1
    • 2
    • 4
  1. 1.Mental Health Research CenterMoscowRussia
  2. 2.N.I. Pirogov Russian National Research Medical University, Academician Yu.E. Veltishchev Research Clinical Institute of Pediatrics, Ministry of Health of the Russian FederationMoscowRussia
  3. 3.Moscow State University of Psychology and EducationMoscowRussia
  4. 4.Department of Medical GeneticsRussian Medical Academy of Postgraduate EducationMoscowRussia

Personalised recommendations