Fluorescence Microscopy of Nanochannel-Confined DNA

  • Fredrik Westerlund
  • Fredrik Persson
  • Joachim Fritzsche
  • Jason P. Beech
  • Jonas O. TegenfeldtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1665)


Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

Key words

DNA Nanochannels Single molecule Fluorescence 



This work was supported by the European Community’s Horizon2020 under grant agreement number 634890 entitled BeyondSeq (J.O.T., J.P.B. and F.W.), the Swedish Research Council under grant number 2015-05062 (F.W.), ERA-NET EuroNanoMed II under grant number E0748601 entitled NanoDiaBac (J.O.T., J.P.B. and F.W.). J.O.T. and J.P.B. acknowledges support from NanoLund at Lund University.


  1. 1.
    Tegenfeldt JO, Prinz C, Cao H, Chou S, Reisner WW, Riehn R, Wang YM, Cox EC, Sturm JC, Silberzan P, Austin RH (2004) The dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci U S A 101(30):10979–10983CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vologodskii A, Cozzarelli N (1995) Modeling of long-range electrostatic interactions in DNA. Biopolymers 35(3):289–296CrossRefPubMedGoogle Scholar
  3. 3.
    Daoud M, de Gennes PG (1977) Statistics of macromolecular solutions trapped in small pores. J Phys 38:85–93CrossRefGoogle Scholar
  4. 4.
    Turban L (1984) Conformation of confined macromolecular chains - crossover between slit and capillary. J Phys 45(2):347–353CrossRefGoogle Scholar
  5. 5.
    Odijk T (1983) On the statistics and dynamics of confined or entangled stiff polymers. Macromolecules 16(8):1340–1344CrossRefGoogle Scholar
  6. 6.
    Frykholm K, Alizadehheidari M, Fritzsche J, Wigenius J, Modesti M, Persson F, Westerlund F (2014) Probing physical properties of a DNA-protein complex using nanofluidic channels. Small 10(5):884–887. doi: 10.1002/smll.201302028 CrossRefPubMedGoogle Scholar
  7. 7.
    Yang YZ, Burkhardt TW, Gompper G (2007) Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Phys Rev E 76(1):011804. doi: 10.1103/PhysRevE.76.011804 CrossRefGoogle Scholar
  8. 8.
    Smithe TSC, Iarko V, Muralidhar A, Werner E, Dorfman KD, Mehlig B (2015) Finite-size corrections for confined polymers in the extended de Gennes regime. Phys Rev E 92(6):5. doi: 10.1103/PhysRevE.92.062601 CrossRefGoogle Scholar
  9. 9.
    Werner E, Mehlig B (2015) Scaling regimes of a semiflexible polymer in a rectangular channel. Phys Rev E 91(5):5. doi: 10.1103/PhysRevE.91.050601 CrossRefGoogle Scholar
  10. 10.
    Reisner W, Pedersen JN, Austin RH (2012) DNA confinement in nanochannels: physics and biological applications. Rep Prog Phys 75(10). doi: 10.1088/0034-4885/75/10/106601
  11. 11.
    Persson F, Utko P, Reisner W, Larsen NB, Kristensen A (2009) Confinement spectroscopy: probing single DNA molecules with tapered nanochannels. Nano Lett 9(4):1382–1385. doi: 10.1021/nl803030e CrossRefPubMedGoogle Scholar
  12. 12.
    Persson F, Tegenfeldt JO (2010) DNA in nanochannels - directly visualizing genomic information. Chem Soc Rev 39(3):985–999. doi: 10.1039/B912918A CrossRefPubMedGoogle Scholar
  13. 13.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NYGoogle Scholar
  14. 14.
    Doi M, Edwards SF (1986) The theory of polymer dynamics, The International Series of Monographs on Physics, vol 73. Oxford University Press, Inc., New YorkGoogle Scholar
  15. 15.
    Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New YorkGoogle Scholar
  16. 16.
    Reisner W, Morton KJ, Riehn R, Wang YM, Yu ZN, Rosen M, Sturm JC, Chou SY, Frey E, Austin RH (2005) Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett 94(19):196101CrossRefPubMedGoogle Scholar
  17. 17.
    Persson F, Westerlund F, Tegenfeldt JO, Kristensen A (2009) Local conformation of confined DNA studied using emission polarization anisotropy. Small 5(2):190–193CrossRefPubMedGoogle Scholar
  18. 18.
    Wang YM, Tegenfeldt JO, Reisner W, Riehn R, Guan XJ, Guo L, Golding I, Cox EC, Sturm J, Austin RH (2005) Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc Natl Acad Sci U S A 102(28):9796–9801CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Riehn R, Lu MC, Wang YM, Lim SF, Cox EC, Austin RH (2005) Restriction mapping in nanofluidic devices. Proc Natl Acad Sci U S A 102(29):10012–10016CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iarko V, Werner E, Nyberg LK, Müller V, Fritzsche J, Ambjörnsson T, Beech JP, Tegenfeldt JO, Mehlig K, Westerlund F, Mehlig B (2015) Extension of nanoconfined DNA: quantitative comparison between experiment and theory. Phys Rev E 92(6):062701CrossRefGoogle Scholar
  21. 21.
    Werner E, Mehlig B (2014) Confined polymers in the extended de Gennes regime. Phys Rev E 90(6):5. doi: 10.1103/PhysRevE.90.062602 CrossRefGoogle Scholar
  22. 22.
    Gupta D, Miller JJ, Muralidhar A, Mahshid S, Reisner W, Dorfman KD (2015) Experimental evidence of weak excluded volume effects for nanochannel confined DNA. ACS Macro Lett 4(7):759–763. doi: 10.1021/acsmacrolett.5b00340 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Frykholm K, Nyberg LK, Westerlund F (2017) Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools. Integr Biol. doi:  10.1039/C7IB00085E
  24. 24.
    Zhang C, Guttula D, Liu F, Malar PP, Ng SY, Dai L, Doyle PS, van Kan JA, van der Maarel JRC (2013) Effect of H-NS on the elongation and compaction of single DNA molecules in a nanospace. Soft Matter 9(40):9593–9601. doi: 10.1039/c3sm51214b CrossRefPubMedGoogle Scholar
  25. 25.
    Roushan M, Kaur P, Karpusenko A, Countryman PJ, Ortiz CP, Fang Lim S, Wang H, Riehn R (2014) Probing transient protein-mediated DNA linkages using nanoconfinement. Biomicrofluidics 8(3):034113. doi: 10.1063/1.4882775 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Müller V, Westerlund F (2017) Optical DNA mapping in nanofluidic devices: principles and applications. Lab Chip 17:579–590Google Scholar
  27. 27.
    Bogas D, Nyberg L, Pacheco R, Azevedo NF, Beech JP, Gomila M, Lalucat J, Manaia CM, Nunes OC, Tegenfeldt JO, Westerlund F (2017) Applications of optical DNA mapping in microbiology. BioTechniques 62(6):255–267Google Scholar
  28. 28.
    Jo K, Dhingra DM, Odijk T, de Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) A single-molecule barcoding system using nanoslits for DNA analysis. Proc Natl Acad Sci U S A 104(8):2673–2678CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M (2010) Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res 38(18):e177. doi: 10.1093/nar/gkq673 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO, Flyvbjerg H (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci U S A 107(30):13294–13299CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nyberg LK, Persson F, Berg J, Bergstrom J, Fransson E, Olsson L, Persson M, Stalnacke A, Wigenius J, Tegenfeldt JO, Westerlund F (2012) A single-step competitive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun 417(1):404–408. doi: 10.1016/j.bbrc.2011.11.128 CrossRefPubMedGoogle Scholar
  32. 32.
    Frykholm K, Nyberg LK, Lagerstedt E, Noble C, Fritzsche J, Karami N, Ambjornsson T, Sandegren L, Westerlund F (2015) Fast size-determination of intact bacterial plasmids using nanofluidic channels. Lab Chip 15(13):2739–2743. doi: 10.1039/c5lc00378d CrossRefPubMedGoogle Scholar
  33. 33.
    Madou MJ (2011) Fundamentals of microfabrication and nanotechnology, 3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  34. 34.
    Reisner W, Beech JP, Larsen NB, Flyvbjerg H, Kristensen A, Tegenfeldt JO (2007) Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment. Phys Rev Lett 99(5):058302. Artn 058302CrossRefPubMedGoogle Scholar
  35. 35.
    Nyberg L, Persson F, Åkerman B, Westerlund F (2013) Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA. Nucleic Acids Res. doi: 10.1093/nar/gkt755
  36. 36.
    Mertz J (2010) Introduction to optical microscopy. Roberts and Company, Greenwood VillageGoogle Scholar
  37. 37.
    Glazer AN, Rye HS (1992) Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359(6398):859–861CrossRefPubMedGoogle Scholar
  38. 38.
    Spielmann HP, Wemmer DE, Jacobsen JP (1995) Solution structure of a DNA complex with the fluorescent Bis-intercalator TOTO determined by NMR-spectroscopy. Biochemistry 34(27):8542–8553CrossRefPubMedGoogle Scholar
  39. 39.
    Kundukad B, Yan J, Doyle PS (2014) Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter 10(48):9721–9728. doi: 10.1039/c4sm02025a CrossRefPubMedGoogle Scholar
  40. 40.
    Lerman LS (1961) Structural considerations in interaction of DNA and acridines. J Mol Biol 3(1):18–30CrossRefPubMedGoogle Scholar
  41. 41.
    Reinert KE (1973) DNA stiffening and elongation caused by binding of ethidium bromide. Biochim Biophys Acta 319(2):135–139CrossRefPubMedGoogle Scholar
  42. 42.
    Thamdrup LH, Persson F, Bruus H, Kristensen A, Flyvbjerg H (2007) Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Appl Phys Lett 91(16). doi: 10.1063/1.2801397
  43. 43.
    Levy SL, Mannion JT, Cheng J, Reccius CH, Craighead HG (2008) Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett 8(11):3839–3844. doi: 10.1021/nl802256s CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Persson F (2009) Nanofluidics for single molecule. Technical University of Denmark, Kongens, LyngbyGoogle Scholar
  45. 45.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McCaffrey J, Sibert J, Zhang B, Zhang YG, Hu WH, Riethman H, Xiao M (2016) CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res 44(2):8. doi: 10.1093/nar/gkv878 CrossRefGoogle Scholar
  47. 47.
    Grunwald A, Dahan M, Giesbertz A, Nilsson A, Nyberg LK, Weinhold E, Ambjornsson T, Westerlund F, Ebenstein Y (2015) Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res 43(18):e117–e117. doi: 10.1093/nar/gkv563 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Muller V, Karami N, Nyberg LK, Pichler C, Pedreschi PCT, Quaderi S, Fritzsche J, Ambjornsson T, Ahren C, Westerlund F (2016) Rapid tracing of resistance plasmids in a nosocomial outbreak using optical DNA mapping. Acs Infect Dis 2(5):322–328. doi: 10.1021/acsinfecdis.6b00017 CrossRefPubMedGoogle Scholar
  49. 49.
    Nyberg LK, Quaderi S, Emilsson G, Karami N, Lagerstedt E, Muller V, Noble C, Hammarberg S, Nilsson AN, Sjoberg F, Fritzsche J, Kristiansson E, Sandegren L, Ambjornsson T, Westerlund F (2016) Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Sci Rep 6:10. doi: 10.1038/srep30410 CrossRefGoogle Scholar
  50. 50.
    Müller V, Rajer F, Frykholm K, Nyberg LK, Quaderi S, Fritzsche J, Kristiansson E, Ambjörnsson T, Sandegren L, Westerlund F (2016) Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep 6:37938. doi:  10.1038/srep37938. - supplementary-information
  51. 51.
    Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25(12):730–748. doi: 10.1016/j.tcb.2015.10.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS, Fritzsche J, Moore ERB, Tegenfeldt JO, Ambjornsson T, Westerlund F (2014) Competitive binding-based optical DNA mapping for fast identification of bacteria - multi-ligand transfer matrix theory and experimental applications on Escherichia coli. Nucleic Acids Res 42(15). doi: 10.1093/nar/gku556
  53. 53.
    Freitag C, Noble C, Fritzsche J, Persson F, Reiter-Schad M, Nilsson AN, Graneli A, Ambjornsson T, Mir KU, Tegenfeldt JO (2015) Visualizing the entire DNA from a chromosome in a single frame. Biomicrofluidics 9(4). doi: 10.1063/1.4923262
  54. 54.
    Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021CrossRefPubMedGoogle Scholar
  55. 55.
    Marie R, Pedersen JN, Bauer DLV, Rasmussen KH, Yusuf M, Volpi E, Flyvbjerg H, Kristensen A, Mir KU (2013) Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc Natl Acad Sci U S A 100(13):4893–4898. doi: 10.1073/pnas.1214570110 CrossRefGoogle Scholar
  56. 56.
    Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453. doi: 10.1039/b805614e CrossRefPubMedGoogle Scholar
  57. 57.
    Persson F, Thamdrup LH, Mikkelsen MBL, Jaarlgard SE, Skafte-Pedersen P, Bruus H, Kristensen A (2007) Double thermal oxidation scheme for the fabrication of SiO2 nanochannels. Nanotechnology 18(24):245301. doi: 10.1088/0957-4484/18/24/245301 CrossRefGoogle Scholar
  58. 58.
    Riehn R, Austin RH (2006) Wetting micro- and nanofluidic devices using supercritical water. Anal Chem 78(16):5933–5934CrossRefPubMedGoogle Scholar
  59. 59.
    Persson F, Fritzsche J, Mir KU, Modesti M, Westerlund F, Tegenfeldt JO (2012) Lipid-based passivation in nanofluidics. Nano Lett 12:2260–2265. doi: 10.1021/nl204535h CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fornander LH, Frykholm K, Fritzsche J, Araya J, Nevin P, Werner E, Cakir A, Persson F, Garcin EB, Beuning PJ, Mehlig B, Modesti M, Westerlund F (2016) Visualizing the nonhomogeneous structure of RAD51 filaments using nanofluidic channels. Langmuir 32(33):8403–8412. doi: 10.1021/acs.langmuir.6b01877 CrossRefPubMedGoogle Scholar
  61. 61.
    Frykholm K, Berntsson RPA, Claesson M, de Battice L, Odegrip R, Stenmark P, Westerlund F (2016) DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels. Nucleic Acids Res 44(15):7219–7227. doi: 10.1093/nar/gkw352 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Fredrik Westerlund
    • 1
  • Fredrik Persson
    • 2
  • Joachim Fritzsche
    • 1
  • Jason P. Beech
    • 3
  • Jonas O. Tegenfeldt
    • 3
    Email author
  1. 1.Chalmers University of TechnologyGothenburgSweden
  2. 2.Vanadis DiagnosticsSollentunaSweden
  3. 3.NanoLund and Department of PhysicsLund UniversityLundSweden

Personalised recommendations