Advertisement

Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope

  • André Klauss
  • Carsten Hille
Part of the Methods in Molecular Biology book series (MIMB, volume 1663)

Abstract

The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.

Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

Key words

Super-resolution Nanoscopy Fluorescence microscopy Confocal laser scanning microscopy Time gating Stimulated emission depletion 

Notes

Acknowledgments

This work was funded by the German Research Foundation (grant number 1850/30001355, www.dfg.de), and the Federal Ministry of Education and Research (“ALSComBi,” grant number 03IPT517Y, www.bmbf.de).

References

  1. 1.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch für Mikrosk Anat 9:413–468. doi: 10.1007/BF02956173 CrossRefGoogle Scholar
  2. 2.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158. doi: 10.1126/science.1137395 CrossRefPubMedGoogle Scholar
  3. 3.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795. doi: 10.1038/nmeth929 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi: 10.1126/science.1127344 CrossRefPubMedGoogle Scholar
  5. 5.
    Hell SW, Sahl SJ, Bates M et al (2015) The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 48:443001. doi: 10.1088/0022-3727/48/44/443001 CrossRefGoogle Scholar
  6. 6.
    Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32. doi: 10.1038/nmeth.1291 CrossRefPubMedGoogle Scholar
  7. 7.
    Eggeling C, Willig KI, Sahl SJ, Hell SW (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48:178–243. doi: 10.1017/S0033583514000146 CrossRefPubMedGoogle Scholar
  8. 8.
    Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16:9614–9621. doi: 10.1364/OE.16.009614 CrossRefPubMedGoogle Scholar
  9. 9.
    Moneron G, Medda R, Hein B et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–1309. doi: 10.1364/OE.18.001302 CrossRefPubMedGoogle Scholar
  10. 10.
    Lukinavičius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733. doi: 10.1038/nmeth.2972 CrossRefPubMedGoogle Scholar
  11. 11.
    Sidenstein SC, D’Este E, Böhm MJ et al (2016) Multicolour multilevel STED nanoscopy of actin/Spectrin Organization at Synapses. Sci rep 6:26725. doi: 10.1038/srep26725 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kukat C, Wurm CA, Spahr H et al (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci 108:13534–13539. doi: 10.1073/pnas.1109263108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li Q, Wang Y, Chen D et al (2014) 2PE-STED microscopy with a single Ti: sapphire laser for reduced illumination. PLoS One 2(9):e88464. doi: 10.1371/journal.pone.0088464 CrossRefGoogle Scholar
  14. 14.
    Li D, Hérault K, Zylbersztejn K et al (2015) Astrocyte VAMP3 vesicles undergo Ca 2+ -independent cycling and modulate glutamate transporter trafficking. J Physiol 593:2807–2832. doi: 10.1113/JP270362 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reuss M, Engelhardt J, Hell SW (2010) Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. Opt Express 18:1049–1058. doi: 10.1364/OE.18.001049 CrossRefPubMedGoogle Scholar
  16. 16.
    Gorlitz F, Hoyer P, Falk H et al (2014) A STED microscope designed for routine biomedical applications. Prog Electromagn Res 147:57–68. doi: 10.2528/PIER14042708 CrossRefGoogle Scholar
  17. 17.
    Westin L, Reuss M, Lindskog M et al (2014) Nanoscopic spine localization of Norbin, an mGluR5 accessory protein. BMC Neurosci 15:45. doi: 10.1186/1471-2202-15-45 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Klauss A, König M, Hille C (2015) Upgrade of a scanning confocal microscope to a single-beam path STED microscope. PLoS One 10(6):e0130717. doi: 10.1371/journal.pone.0130717 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bingen P, Reuss M, Engelhardt J, Hell SW (2011) Parallelized STED fluorescence nanoscopy. Opt Express 19:23716–23726. doi: 10.1364/OE.19.023716 CrossRefPubMedGoogle Scholar
  20. 20.
    Auksorius E, Boruah BR, Dunsby C et al (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33:113–115. doi: 10.1364/OL.33.000113 CrossRefPubMedGoogle Scholar
  21. 21.
    Bückers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19:3130–3143. doi: 10.1364/OE.19.003130 CrossRefPubMedGoogle Scholar
  22. 22.
    Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918. doi: 10.1038/nmeth1108 CrossRefPubMedGoogle Scholar
  23. 23.
    Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445. doi: 10.1073/pnas.0604965103 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Niehörster T, Löschberger A, Gregor I et al (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13:257–262. doi: 10.1038/nmeth.3740 CrossRefPubMedGoogle Scholar
  25. 25.
    Bottanelli F, Kromann EB, Allgeyer ES et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7:1–5. doi: 10.1038/ncomms10778 CrossRefGoogle Scholar
  26. 26.
    Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573. doi: 10.1038/nmeth.1624 CrossRefPubMedGoogle Scholar
  27. 27.
    Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19:4242–4254. doi: 10.1364/OE.19.004242 CrossRefPubMedGoogle Scholar
  28. 28.
    Vicidomini G, Schönle A, Ta H et al (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8(1):e54421. doi: 10.1371/journal.pone.0054421 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Galiani S, Harke B, Vicidomini G et al (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20:7362–7374. doi: 10.1364/OE.20.007362 CrossRefPubMedGoogle Scholar
  30. 30.
    Vonesch C, Unser M (2008) A fast Thresholded Landweber algorithm for wavelet-regularized multidimensional Deconvolution. IEEE Trans Image Process 17:539–549. doi: 10.1109/TIP.2008.917103 CrossRefPubMedGoogle Scholar
  31. 31.
    Ingaramo M, York AG, Hoogendoorn E et al (2014) Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths. ChemPhysChem 15:794–800. doi: 10.1002/cphc.201300831 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Physical Chemistry/Applied Laser Sensing in Complex Biosystems (ALS ComBi), Institute of ChemistryUniversity of PotsdamPotsdamGermany

Personalised recommendations