Advertisement

Correlative Single-Molecule Localization Microscopy and Confocal Microscopy

  • Christian SoellerEmail author
  • Yufeng Hou
  • Isuru D. Jayasinghe
  • David Baddeley
  • David Crossman
Part of the Methods in Molecular Biology book series (MIMB, volume 1663)

Abstract

Single-molecule localization microscopy allows the ability to image fluorescence labeled molecular targets at nanoscale resolution. However, for many biological questions the ability to provide tissue and cellular context in addition to these high resolution data is eminently informative. Here, we describe a procedure to achieve this aim by correlatively imaging human cardiac tissue first at the nanoscale with direct stochastic optical reconstruction microscopy (dSTORM) and then at the diffraction limit with conventional confocal microscopy.

Key words

Super-resolution microscopy Confocal imaging Fluorescence Multiscale data Heart Antibodies Correlative imaging Human cardiac tissue 

Notes

Acknowledgments

This work was supported by Health Research Council of New Zealand (HRC.govt.nz) grant 12/240, a Human Frontier Science Programme Award and EPSRC grant EP/N008235/1 to CS.

References

  1. 1.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158. doi: 10.1126/science.1137395 CrossRefPubMedGoogle Scholar
  2. 2.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. doi: 10.1146/annurev.biochem.77.061906.092014 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175. doi: 10.1083/jcb.201002018 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65:967–980. doi: 10.1366/11-06398 CrossRefPubMedGoogle Scholar
  5. 5.
    Barna L, Dudok B, Miczán V et al (2016) Correlated confocal and super-resolution imaging by VividSTORM. Nat Protoc 11:163–183. doi: 10.1038/nprot.2016.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Hou Y, Jayasinghe I, Crossman DJ et al (2015) Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol 80:45–55. doi: 10.1016/j.yjmcc.2014.12.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Jayasinghe I, Crossman D, Soeller C, Cannell M (2012) Comparison of the organization of T-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium. Clin Exp Pharmacol Physiol 39:469–476. doi: 10.1111/j.1440-1681.2011.05578.x CrossRefPubMedGoogle Scholar
  8. 8.
    Soeller C, Baddeley D (2013) Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol 58:32–40. doi: 10.1016/j.yjmcc.2012.11.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Takeshima H, Komazaki S, Nishi M et al (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22PubMedGoogle Scholar
  10. 10.
    Soeller C, Crossman D, Gilbert R, Cannell MB (2007) Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci 104:14958–14963CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crossman DJ, Ruygrok PR, Soeller C, Cannell MB (2011) Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One 6:e17901CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crossman DJ, Hou Y, Jayasinghe I et al (2015) Combining confocal and single molecule localisation microscopy: a correlative approach to multi-scale tissue imaging. Methods. doi: 10.1016/j.ymeth.2015.03.011
  13. 13.
    Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6:e20645CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kukulski W, Schorb M, Welsch S et al (2012) Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol. doi: 10.1016/B978-0-12-416026-2.00013-3
  15. 15.
    Tam J, Cordier GA, Borbely JS et al (2014) Cross-talk-free multi-color STORM imaging using a single fluorophore. PLoS One 9:e101772. doi: 10.1371/journal.pone.0101772 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000. doi: 10.1016/S0262-8856(03)00137-9 CrossRefGoogle Scholar
  17. 17.
    Wong J, Baddeley D, Bushong E et al (2013) Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions. Biophys J 104:L22–L24. doi: 10.1016/j.bpj.2013.02.059 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cole RW, Jinadasa T, Brown CM (2011) Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat Protoc 6:1929–1941. doi: 10.1038/nprot.2011.407 CrossRefPubMedGoogle Scholar
  19. 19.
    Baddeley D, Jayasinghe ID, Lam L et al (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A 106:22275–22280. doi: 10.1073/pnas.0908971106 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jayasinghe ID, Baddeley D, Kong CHT et al (2012) Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J 102:L19–L21. doi: 10.1016/j.bpj.2012.01.034 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Christian Soeller
    • 1
    • 2
    Email author
  • Yufeng Hou
    • 2
    • 4
  • Isuru D. Jayasinghe
    • 3
  • David Baddeley
    • 5
    • 6
  • David Crossman
    • 2
  1. 1.Living Systems Institute and Biomedical PhysicsUniversity of ExeterExeterUK
  2. 2.Department of PhysiologyUniversity of AucklandAucklandNew Zealand
  3. 3.School of Biomedical SciencesUniversity of LeedsLeedsUK
  4. 4.Institute of Experimental Medical ResearchOslo University Hospital UllevålUniversity of OsloNorway
  5. 5.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
  6. 6.Department of Cell BiologyYale UniversityNew HavenUSA

Personalised recommendations