Paper-Based for Isolation of Extracellular Vesicles

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)

Abstract

Paper-based devices chemically functionalized with capturing molecules enable the isolation and characterization of extracellular vesicles (EVs) from samples of limited amount. Here, we describe the isolation of EV subpopulations from human serum samples. The morphology, content, and amount of captured EVs can be assessed using scanning electron microscopy (SEM), transcriptome analysis, and paper-based enzyme-linked immunosorbent assays (pELISA), respectively. A colorimetric readout can be detected from 10 μL serum within 10 min.

Key words

Extracellular vesicles Exosomes Cellulose paper Microfluidics Paper ELISA Chemical conjugation 

Notes

Acknowledgment

This work was supported in part by the Taiwan National Science Council grants—NSC 99-2320-B-007-005-MY2 (CC) and NSC 101-2628-E-007-011-MY3 (CMC), and the Veterans General Hospitals and University System of Taiwan Joint Research Program (CC).

References

  1. 1.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887CrossRefPubMedGoogle Scholar
  2. 2.
    Lässer C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lötvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9. doi: 10.1186/1479-5876-9-9 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wiggins RC, Glatfelter A, Kshirsagar B, Brukman J (1986) Procoagulant Activity in Nornal human-urine associated with subcellular particles. Kidney Int 29(2):591–597CrossRefPubMedGoogle Scholar
  4. 4.
    Raj DAA, Fiume I, Capasso G, Pocsfalvi G (2012) A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int 81(12):1263–1272CrossRefPubMedGoogle Scholar
  5. 5.
    Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978CrossRefPubMedGoogle Scholar
  6. 6.
    Keller S, Ridinger J, Rupp AK, Janssen JWG, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86. doi: 10.1186/1479-5876-9-86 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79(1):12–17CrossRefPubMedGoogle Scholar
  8. 8.
    Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LAA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121CrossRefPubMedGoogle Scholar
  9. 9.
    Perkumas KM, Hoffman EA, McKay BS, Allingham RR, Stamer WD (2007) Myocilin-associated exosomes in human ocular samples. Exp Eye Res 84(1):209–212CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson HC, Mulhall D, Garimella R (2010) Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest 90(11):1549–1557CrossRefPubMedGoogle Scholar
  11. 11.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang ZL, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356CrossRefPubMedGoogle Scholar
  13. 13.
    Théry C, Clayton A, Amigorena S, Raposo G (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Morgan K (ed) Current protocols in cell biology. John Wiley, New York, NY, p 3.22Google Scholar
  14. 14.
    Rood IM, Deegens JKJ, Merchant ML, Tamboer WPM, Wilkey DW, Wetzels JFM, Klein JB (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78(8):810–816CrossRefPubMedGoogle Scholar
  15. 15.
    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226CrossRefPubMedGoogle Scholar
  16. 16.
    Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1-2):21–30CrossRefPubMedGoogle Scholar
  17. 17.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandez-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77(8):736–742CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alvarez ML, Khosroheidari M, Ravi RK, DiStefano JK (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032CrossRefPubMedGoogle Scholar
  20. 20.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracel Vesicles 2:20360CrossRefGoogle Scholar
  21. 21.
    Shin H, Han C, Labuz JM, Kim J, Kim J, Cho S, Gho YS, Takayama S, Park J (2015) High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep 5:13103CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511CrossRefPubMedGoogle Scholar
  23. 23.
    Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 12(24):5202–5210CrossRefPubMedGoogle Scholar
  24. 24.
    Chen C, Lin BR, Wang HK, Fan ST, Hsu MY, Cheng CM (2014) Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16(5):849–856CrossRefGoogle Scholar
  25. 25.
    Chen C, Lin BR, Hsu MY, Cheng CM (2015) Paper-based devices for isolation and characterization of extracellular vesicles. J Vis Exp 98:e52722Google Scholar
  26. 26.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095CrossRefPubMedGoogle Scholar
  27. 27.
    Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826CrossRefPubMedGoogle Scholar
  28. 28.
    Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RMD, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “R-F Paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv Funct Mater 24(1):60–70CrossRefGoogle Scholar
  29. 29.
    Usami S, Chen HH, Zhao YH, Chien S, Skalak R (1993) Design and construction of a linear shear-stress flow chamber. Ann Biomed Eng 21(1):77–83CrossRefPubMedGoogle Scholar
  30. 30.
    Cras JJ, Rowe-Taitt CA, Nivens DA, Ligler FS (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens Bioelectron 14(8-9):683–688CrossRefGoogle Scholar
  31. 31.
    Murthy SK, Sin A, Tompkins RG, Toner M (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20(26):11649–11655CrossRefPubMedGoogle Scholar
  32. 32.
    Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D (2008) Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 83(4):921–927CrossRefPubMedGoogle Scholar
  33. 33.
    Inal JM, Ansa-Addo EA, Stratton D, Kholia S, Antwi-Baffour SS, Jorfi S, Lange S (2012) Microvesicles in health and disease. Arch Immunol Ther Exp (Warsz) 60(2):107–121CrossRefGoogle Scholar
  34. 34.
    Crescitelli R, Lässer C, Szabo TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracel Vesicles 2:20677CrossRefGoogle Scholar
  35. 35.
    Fridley GE, Holstein CA, Oza SB, Yager P (2013) The evolution of nitrocellulose as a material for bioassays. MRS Bull 38(4):326–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Nanoengineering and MicrosystemsNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoliTaiwan
  3. 3.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations