Advertisement

Tracking Extracellular Vesicles Delivery and RNA Translation Using Multiplexed Reporters

  • Anthony Yan-Tang Wu
  • Charles Pin-Kuang LaiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)

Abstract

Elucidating extracellular vesicle (EV; e.g., exosomes, microvesicles) delivery and translation of its RNA cargo with an accurate spatiotemporal resolution is critical in helping understand EV’s role under normal and pathological conditions. We here describe a multiplexed fluorescent and bioluminescent reporter strategy to simultaneously monitor and quantify EV delivery, as well as EV-RNA translation in EV-recipient cells.

Key words

Extracellular vesicles Exosomes Microvesicles Fluorescent proteins Fluorescence-activated cell sorting Bioluminescence Gaussia luciferase RNA translation 

Notes

Acknowledgment

This work was supported by the Ministry of Science and Technology of Taiwan (MOST), Taiwan (MOST 104-2320-B-007-005-MY2, C.P.L), and United States NIH grants CA069246 (Xandra O. Breakefield, Bakhos A. Tannous, and Ralph Weissleder), U19CA179563 (X.O.B and Thorsten R. Mempel), Voices Against Brain Cancer (X.O.B. and C.P.L.), and the Canadian Institutes of Health Research (CIHR; C.P.L.).

References

  1. 1.
    Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228. doi: 10.3389/fphys.2012.00228 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388. doi: 10.1016/S0092-8674(00)81282-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797. doi: 10.1093/biosci/biv084 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. doi: 10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    EL Andaloussi S, Maeger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):348–358. doi: 10.1038/nrd3978 CrossRefGoogle Scholar
  6. 6.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–U1209. doi: 10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191. doi: 10.1038/mt.2012.180 CrossRefPubMedGoogle Scholar
  8. 8.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. doi: 10.1038/ncomms1285 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM (2013) Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev 65(3):383–390. doi: 10.1016/j.addr.2012.08.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Spötl L, Sarti A, Dierich MP, Möst J (1995) Cell membrane labeling with fluorescent dyes for the demonstration of cytokineinduced fusion between monocytes and tumor cells. Cytometry 21:160–169. doi: 10.1002/cyto.990210208 CrossRefPubMedGoogle Scholar
  11. 11.
    Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wallace PK, Tario J, Joseph D, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA (2008) Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73A(11):1019–1034. doi: 10.1002/cyto.a.20619
  13. 13.
    Blaskovic S, Blanc M, van der Goot FG (2013) What does S-palmitoylation do to membrane proteins? FEBS J 280(12):2766–2774. doi: 10.1111/febs.12263 CrossRefPubMedGoogle Scholar
  14. 14.
    Aicart-Ramos C, Valero RA, Rodriguez-Crespo I (2011) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 1808(12):2981–2994. doi: 10.1016/j.bbamem.2011.07.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane Microdomains of live cells. Science 296(5569):913–916. doi: 10.1126/science.1068539 CrossRefPubMedGoogle Scholar
  16. 16.
    Fuhrmann G, Herrmann IK, Stevens MM (2015) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10(3):397–409. doi: 10.1016/j.nantod.2015.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, Breakefield XO (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029. doi: 10.1038/ncomms8029 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thorne N, Inglese J, Auld DS (2010) Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 17(6):646–657. doi: 10.1016/j.chembiol.2010.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11(3):435–443. doi: 10.1016/j.ymthe.2004.10.016 CrossRefPubMedGoogle Scholar
  20. 20.
    McCabe JB, Berthiaume LG (1999) Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell 10(11):3771–3786CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW (2004) Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122(2):131–139. doi: 10.1016/j.jviromet.2004.08.017 CrossRefPubMedGoogle Scholar
  22. 22.
    Niers JM, Chen JW, Lewandrowski G, Kerami M, Garanger E, Wojtkiewicz G, Waterman P, Keliher E, Weissleder R, Tannous BA (2012) Single reporter for targeted multimodal in vivo imaging. J Am Chem Soc 134(11):5149–5156. doi: 10.1021/ja209868g CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Anthony Yan-Tang Wu
    • 1
    • 2
  • Charles Pin-Kuang Lai
    • 1
    • 2
    Email author
  1. 1.Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Institute of Atomic and Molecular SciencesTaipeiTaiwan

Personalised recommendations