Extracellular Vesicles pp 233-241

Part of the Methods in Molecular Biology book series (MIMB, volume 1660) | Cite as

Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy

  • Dmitry Ter-Ovanesyan
  • Emma J. K. Kowal
  • Aviv Regev
  • George M. Church
  • Emanuele Cocucci
Protocol

Abstract

High-resolution fluorescence microscopy approaches enable the study of single objects or biological complexes. Single object studies have the general advantage of uncovering heterogeneity that may be hidden during the ensemble averaging which is common in any bulk conventional biochemical analysis. The implementation of single object analysis in the study of extracellular vesicles (EVs) may therefore be used to characterize specific properties of vesicle subsets which would be otherwise undetectable. We present a protocol for staining isolated EVs with a fluorescent lipid dye and attaching them onto a glass slide in preparation for imaging with total internal reflection fluorescence microscopy (TIRF-M) or other high-resolution microscopy techniques.

Key words

Exosomes Extracellular vesicles EVs Imaging Microscopy TIRF 

References

  1. 1.
    Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232CrossRefPubMedGoogle Scholar
  2. 2.
    Revenfeld AL, Baek R, Nielsen MH, Stensballe A, Varming K, Jorgensen M (2014) Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36(6):830–846CrossRefPubMedGoogle Scholar
  3. 3.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22PubMedGoogle Scholar
  4. 4.
    Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372CrossRefPubMedGoogle Scholar
  5. 5.
    Cvjetkovic A, Lotvall J, Lasser C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 3Google Scholar
  6. 6.
    Cocucci E, Aguet F, Boulant S, Kirchhausen T (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150(3):495–507CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chou YY, Vafabakhsh R, Doganay S, Gao Q, Ha T, Palese P (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci U S A 109(23):9101–9106CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R (2013) Innovation in detection of microparticles and exosomes. J Thromb Haemost 11(Suppl 1):36–45PubMedGoogle Scholar
  9. 9.
    Nolan JP, Moore J (2016) Extracellular vesicles: great potential, many challenges. Cytometry B Clin Cytom 90:324–325CrossRefPubMedGoogle Scholar
  10. 10.
    Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, Breakefield XO (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Koliha N, Wiencek Y, Heider U, Jungst C, Kladt N, Krauthauser S, Johnston IC, Bosio A, Schauss A, Wild S (2016) A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles 5:29975CrossRefPubMedGoogle Scholar
  13. 13.

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Dmitry Ter-Ovanesyan
    • 1
    • 2
    • 3
    • 4
  • Emma J. K. Kowal
    • 1
    • 3
  • Aviv Regev
    • 4
    • 5
  • George M. Church
    • 1
    • 3
  • Emanuele Cocucci
    • 6
  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Department of Molecular and Cellular BiologyHarvard UniversityBostonUSA
  3. 3.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  4. 4.Broad Institute of MIT and HarvardCambridgeUSA
  5. 5.Department of BiologyMITCambridgeUSA
  6. 6.Division of Pharmaceutics and Pharmaceutical ChemistryCollege of Pharmacy, The Ohio State UniversityColumbusUSA

Personalised recommendations