Identification of c-di-GMP-Responsive Riboswitches

  • Johann Peltier
  • Olga SoutourinaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1657)


Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is an important signaling molecule for community behavior control, cell morphogenesis, and virulence in bacteria. In addition to protein effectors, this second messenger binds RNA molecules that act as riboswitches to control target gene expression. In this chapter, we describe a method for experimental validation of the functionality of c-di-GMP-responsive riboswitches and the analysis of c-di-GMP control of target gene expression by qRT-PCR and Northern blot. This procedure can be used for the studies of in silico-predicted riboswitch candidates, as well as a targeted experimental approach for exploring the data from next-generation sequencing. The examples on the analysis of type I and type II c-di-GMP-responsive riboswitches in Clostridium difficile are provided to illustrate the application of the method.

Key words

Riboswitches c-di-GMP Premature termination of transcription Target gene Northern blot qRT-PCR 


  1. 1.
    Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29(1):11–17. doi: 10.1016/j.tibs.2003.11.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152(1):17–24. doi: 10.1016/j.cell.2012.12.024 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Romling U (2012) Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol 14(8):1817–1829. doi: 10.1111/j.1462-2920.2011.02617.x CrossRefPubMedGoogle Scholar
  4. 4.
    Hengge R (2010) Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal 3(149):pe44. doi: 10.1126/scisignal.3149pe44 CrossRefPubMedGoogle Scholar
  5. 5.
    Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329(5993):845–848. doi: 10.1126/science.1190713 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Smith KD, Shanahan CA, Moore EL, Simon AC, Strobel SA (2011) Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc Natl Acad Sci U S A 108(19):7757–7762. doi: 10.1073/pnas.1018857108 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Smith KD, Strobel SA (2011) Interactions of the c-di-GMP riboswitch with its second messenger ligand. Biochem Soc Trans 39(2):647–651. doi: 10.1042/BST0390647 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. doi: 10.1126/science.1159519 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bordeleau E, Purcell EB, Lafontaine DA, Fortier L-C, Tamayo R, Burrus V (2015) Cyclic Di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 197(5):819–832. doi: 10.1128/JB.02340-14 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen AG, Sudarsan N, Breaker RR (2011) Mechanism for gene control by a natural allosteric group I ribozyme. RNA 17(11):1967–1972. doi: 10.1261/rna.2757311 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rosinski-Chupin I, Soutourina O, Martin-Verstraete I (2014) Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites. Methods Enzymol 549:3–27. doi: 10.1016/B978-0-12-801122-5.00001-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R (2016) Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352(6282):aad9822. doi: 10.1126/science.aad9822 CrossRefPubMedGoogle Scholar
  13. 13.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41(Database issue):D226–D232. doi: 10.1093/nar/gks1005 CrossRefPubMedGoogle Scholar
  14. 14.
    Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C, Sismeiro O, Semenova E, Severinov K, Le Bouguenec C, Coppée J-Y (2013) Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 9(5):e1003493. doi: 10.1371/journal.pgen.1003493 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Burhenne H, Kaever V (2013) Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS. Methods Mol Biol 1016:27–37. doi: 10.1007/978-1-62703-441-8_3 CrossRefPubMedGoogle Scholar
  16. 16.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  17. 17.
    Bordeleau E, Fortier LC, Malouin F, Burrus V (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7(3):e1002039. doi: 10.1371/journal.pgen.1002039 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R (2016) Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J Bacteriol 198(3):565–577. doi: 10.1128/JB.00816-15 CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194(13):3307–3316. doi: 10.1128/JB.00100-12 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nelson JW, Sudarsan N, Phillips GE, Stav S, Lunse CE, McCown PJ, Breaker RR (2015) Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci U S A 112(17):5389–5394. doi: 10.1073/pnas.1419264112 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratoire Pathogenèse des Bactéries AnaérobiesInstitut PasteurParis Cedex 15France
  2. 2.Université Paris Diderot, Sorbonne Paris CitéParis Cedex 15France
  3. 3.Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations