Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins

  • Benoît-Joseph Laventie
  • Timo Glatter
  • Urs Jenal
Part of the Methods in Molecular Biology book series (MIMB, volume 1657)


Capture compound technology coupled to mass spectrometry (CCMS) allows to biochemically identify ligand receptors. Using a c-di-GMP-specific Capture Compound, we adapted this method for the identification and characterization of c-di-GMP binding proteins in any bacterial species. Because in silico analysis often fails to predict novel c-di-GMP effectors, this universal method aims at better defining the cellular c-di-GMP network in a wide range of bacteria. CCMS was successfully applied in several bacterial species (Nesper et al., J Proteom 75:4874–4878, 2012; Steiner et al., EMBO J 32:354–368, 2013; Tschowri et al., Cell 158:1136–1147, 2014; Trampari et al., J Biol Chem 290:24470–24483, 2015; Rotem et al., J Bacteriol 198:127–137, 2015). To outline the detailed protocol and to illustrate its power, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control, as an example. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network.

Key words

Capture compound Photoactivable crosslinker Mass spectrometry c-di-GMP effector EAL GGDEF PilZ Pseudomonas aeruginosa 



We thank Jutta Nesper who established the protocol and Alberto Reinders for his work in adapting the CCMS conditions for P. aeruginosa. We also thank Pablo Manfredi for the annotation of the P. aeruginosa proteins and Erik Ahrné for his help with the MS data evaluation. This work was supported by the Swiss National Science Foundation (SNF) Sinergia grant CRSII3_127433.


  1. 1.
    Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteom 75(15):4874–4878. doi: 10.1016/j.jprot.2012.05.033 CrossRefGoogle Scholar
  2. 2.
    Steiner S, Lori C, Boehm A, Jenal U (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32(3):354–368. doi: 10.1038/emboj.2012.315 CrossRefPubMedGoogle Scholar
  3. 3.
    Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158(5):1136–1147. doi: 10.1016/j.cell.2014.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Trampari E, Stevenson CE, Little RH, Wilhelm T, Lawson DM, Malone JG (2015) Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 290(40):24470–24483. doi: 10.1074/jbc.M115.661439 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rotem O, Nesper J, Borovok I, Gorovits R, Kolot M, Pasternak Z, Shin I, Glatter T, Pietrokovski S, Jenal U, Jurkevitch E (2015) An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol 198(1):127–137. doi: 10.1128/JB.00422-15 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273. doi: 10.1038/nrmicro2109 CrossRefPubMedGoogle Scholar
  7. 7.
    Sondermann H, Shikuma NJ, Yildiz FH (2012) You've come a long way: c-di-GMP signaling. Curr Opin Microbiol 15(2):140–146. doi: 10.1016/j.mib.2011.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735. doi: 10.1038/nrmicro2203 CrossRefPubMedGoogle Scholar
  9. 9.
    Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280(35):30829–30837. doi: 10.1074/jbc.M504429200 CrossRefPubMedGoogle Scholar
  10. 10.
    Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188(24):8327–8334. doi: 10.1128/JB.01079-06 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104. doi: 10.1101/gad.502409 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Newell PD, Monds RD, O'Toole GA (2009) LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. Proc Natl Acad Sci U S A 106(9):3461–3466. doi: 10.1073/pnas.0808933106 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. doi: 10.1093/bioinformatics/bti739 CrossRefPubMedGoogle Scholar
  14. 14.
    Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166. doi: 10.1038/sj.emboj.7601918 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li W, Cui T, Hu L, Wang Z, Li Z, He ZG (2015) Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat Commun 6:8330. doi: 10.1038/ncomms9330 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452. doi: 10.1111/mmi.12672 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481. doi: 10.1038/ncomms12481 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lenz T, Poot P, Grabner O, Glinski M, Weinhold E, Dreger M, Koster H (2010) Profiling of methyltransferases and other S-adenosyl-L-homocysteine-binding proteins by capture compound mass spectrometry (CCMS). J Vis Exp: JoVE 46. doi: 10.3791/2264
  19. 19.
    Köster H, Little DP, Luan P, Muller R, Siddiqi SM, Marappan S, Yip P (2007) Capture compound mass spectrometry: a technology for the investigation of small molecule protein interactions. Assay Drug Dev Technol 5(3):381–390. doi: 10.1089/adt.2006.039 CrossRefPubMedGoogle Scholar
  20. 20.
    Düvel J, Bertinetti D, Möller S, Schwede F, Morr M, Wissing J, Radamm L, Zimmermann B, Genieser H, Jänsch L, Herberg F, Häussler S (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88(2):229–236. doi: 10.1016/j.mimet.2011.11.015 CrossRefPubMedGoogle Scholar
  21. 21.
    Laventie BJ, Nesper J, Ahrne E, Glatter T, Schmidt A, Jenal U (2015) Capture compound mass spectrometry–a powerful tool to identify novel c-di-GMP effector proteins. J Vis Exp: JoVE 97. doi: 10.3791/51404
  22. 22.
    Baraquet C, Harwood CS (2013) Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker a motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 110(46):18478–18483. doi: 10.1073/pnas.1318972110 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bertinetti D, Schweinsberg S, Hanke SE, Schwede F, Bertinetti O, Drewianka S, Genieser HG, Herberg FW (2009) Chemical tools selectively target components of the PKA system. BMC Chem Biol 9:3. doi: 10.1186/1472-6769-9-3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dalhoff C, Huben M, Lenz T, Poot P, Nordhoff E, Koster H, Weinhold E (2010) Synthesis of S-adenosyl-L-homocysteine capture compounds for selective photoinduced isolation of methyltransferases. Chembiochem: a Eur J Chem Biol 11(2):256–265. doi: 10.1002/cbic.200900349 CrossRefGoogle Scholar
  25. 25.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3. Article3. doi: 10.2202/1544-6115.1027

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Benoît-Joseph Laventie
    • 1
  • Timo Glatter
    • 2
    • 3
  • Urs Jenal
    • 1
  1. 1.Infection Biology, BiozentrumUniversity of BaselBaselSwitzerland
  2. 2.Proteomics Core Facility, BiozentrumUniversity of BaselBaselSwitzerland
  3. 3.Facility for Mass Spectrometry and ProteomicsMax-Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations