Genome-Wide Cell Type-Specific Mapping of In Vivo Chromatin Protein Binding Using an FLP-Inducible DamID System in Drosophila

  • Alexey V. Pindyurin
Part of the Methods in Molecular Biology book series (MIMB, volume 1654)


A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.

Key words

Drosophila melanogaster Chromatin proteins Genomic binding sites DamID Cell type-specific profiling “Flp-Out” approach 



I thank the laboratory of Prof. B. van Steensel at the Netherlands Cancer Institute (Amsterdam, the Netherlands) for providing an excellent working environment, the NKI Genomics Core Facility for help with the development of the protocol for preparation of DNA samples for Illumina high-throughput sequencing; Anna A. Ogienko for technical support; Mario Amendola, Maurizio Gatti, and the members of Laboratory of Cell Division for critical reading of the manuscript and helpful suggestions. This work was supported by the grant of Russian Science Foundation no. 16-14-10288.


  1. 1.
    Bartman CR, Blobel GA (2015) Perturbing chromatin structure to understand mechanisms of gene expression. Cold Spring Harb Symp Quant Biol 80:207–212CrossRefPubMedGoogle Scholar
  2. 2.
    Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500CrossRefPubMedGoogle Scholar
  3. 3.
    Khurana S, Oberdoerffer P (2015) Replication stress: a lifetime of epigenetic change. Genes (Basel) 6(3):858–877CrossRefGoogle Scholar
  4. 4.
    Dabin J, Fortuny A, Polo SE (2016) Epigenome maintenance in response to DNA damage. Mol Cell 62(5):712–727CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van Steensel B (2005) Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 37 Suppl:S18–S24CrossRefPubMedGoogle Scholar
  6. 6.
    Southall TD, Brand AH (2007) Chromatin profiling in model organisms. Brief Funct Genomic Proteomic 6(2):133–140CrossRefPubMedGoogle Scholar
  7. 7.
    Aughey GN, Southall TD (2016) Dam it's good! DamID profiling of protein–DNA interactions. Wiley Interdiscip Rev Dev Biol 5:25–37CrossRefPubMedGoogle Scholar
  8. 8.
    Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet 13(12):840–852CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Christova R (2013) Detecting DNA–protein interactions in living cells--ChIP approach. Adv Protein Chem Struct Biol 91:101–133CrossRefPubMedGoogle Scholar
  10. 10.
    Rodriguez-Ubreva J, Ballestar E (2014) Chromatin immunoprecipitation. Methods Mol Biol 1094:309–318CrossRefPubMedGoogle Scholar
  11. 11.
    Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein–DNA interactions detected at single-nucleotide resolution. Cell 147(6):1408–1419CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wardle FC, Tan H (2015) A ChIP on the shoulder? Chromatin immunoprecipitation and validation strategies for ChIP antibodies. F1000Res 4:235PubMedPubMedCentralGoogle Scholar
  13. 13.
    van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18(4):424–428CrossRefPubMedGoogle Scholar
  14. 14.
    van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27(3):304–308CrossRefPubMedGoogle Scholar
  15. 15.
    Ratel D, Ravanat JL, Berger F, Wion D (2006) N6-methyladenine: the other methylated base of DNA. BioEssays 28(3):309–315CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shagin DA, Lukyanov KA, Vagner LL, Matz MV (1999) Regulation of average length of complex PCR product. Nucleic Acids Res 27(18):e23CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE, van Steensel B, Micklem G, Brand AH (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 11(6):775–789CrossRefPubMedGoogle Scholar
  18. 18.
    Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein–genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359CrossRefPubMedGoogle Scholar
  19. 19.
    Coffin SR, Reich NO (2009) Escherichia coli DNA adenine methyltransferase: intrasite processivity and substrate-induced dimerization and activation. Biochemistry 48(31):7399–7410CrossRefPubMedGoogle Scholar
  20. 20.
    Pollak AJ, Reich NO (2012) Proximal recognition sites facilitate intrasite hopping by DNA adenine methyltransferase: mechanistic exploration of epigenetic gene regulation. J Biol Chem 287(27):22873–22881CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lu L, Patel H, Bissler JJ (2002) Optimizing DpnI digestion conditions to detect replicated DNA. BioTechniques 33(2):316–318PubMedGoogle Scholar
  22. 22.
    Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006) DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J 48(1):153–163CrossRefPubMedGoogle Scholar
  23. 23.
    Venkatasubrahmanyam S, Hwang WW, Meneghini MD, Tong AH, Madhani HD (2007) Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A 104(42):16609–16614CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Woolcock KJ, Gaidatzis D, Punga T, Buhler M (2011) Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol 18(1):94–99CrossRefPubMedGoogle Scholar
  25. 25.
    Gonzalez-Aguilera C, Ikegami K, Ayuso C, de Luis A, Iniguez M, Cabello J, Lieb JD, Askjaer P (2014) Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol 15(2):R21CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143(2):212–224CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38(4):603–613CrossRefPubMedGoogle Scholar
  28. 28.
    Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951CrossRefPubMedGoogle Scholar
  29. 29.
    Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nat Protoc 2(6):1467–1478CrossRefPubMedGoogle Scholar
  30. 30.
    Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, Zhan Y, Lajoie B, de Graaf CA, Amendola M, Fudenberg G, Imakaev M, Mirny LA, Jalink K, Dekker J, van Oudenaarden A, van Steensel B (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163(1):134–147CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030–1040CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44(2):148–156CrossRefPubMedGoogle Scholar
  33. 33.
    Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26(1):101–112CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marshall OJ, Southall TD, Cheetham SW, Brand AH (2016) Cell-type-specific profiling of protein–DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nat Protoc 11(9):1586–1598CrossRefPubMedGoogle Scholar
  35. 35.
    Pindyurin AV, Pagie L, Kozhevnikova EN, van Arensbergen J, van Steensel B (2016) Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res 44(12):5646–5657CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72(4):527–540CrossRefPubMedGoogle Scholar
  37. 37.
    Qi J, Su S, McGuffin ME, Mattox W (2006) Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing. Nucleic Acids Res 34(21):6256–6263CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89(14):6232–6236CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Silies M, Yuva Y, Engelen D, Aho A, Stork T, Klambt C (2007) Glial cell migration in the eye disc. J Neurosci 27(48):13130–13139CrossRefPubMedGoogle Scholar
  40. 40.
    Millard SS, Flanagan JJ, Pappu KS, Wu W, Zipursky SL (2007) Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 447(7145):720–724CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Therrien M, Wong AM, Rubin GM (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95(3):343–353CrossRefPubMedGoogle Scholar
  42. 42.
    Narbonne K, Besse F, Brissard-Zahraoui J, Pret AM, Busson D (2004) polyhomeotic is required for somatic cell proliferation and differentiation during ovarian follicle formation in Drosophila. Development 131(6):1389–1400CrossRefPubMedGoogle Scholar
  43. 43.
    Lee CH, Herman T, Clandinin TR, Lee R, Zipursky SL (2001) N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30(2):437–450CrossRefPubMedGoogle Scholar
  44. 44.
    Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A 112(22):E2967–E2976CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bohm RA, Welch WP, Goodnight LK, Cox LW, Henry LG, Gunter TC, Bao H, Zhang B (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 107(37):16378–16383CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38(9):1005–1014CrossRefPubMedGoogle Scholar
  47. 47.
    Luo SD, Shi GW, Baker BS (2011) Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development 138(13):2761–2771CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stocker H, Gallant P (2008) Getting started : an overview on raising and handling Drosophila. Methods Mol Biol 420:27–44CrossRefPubMedGoogle Scholar
  49. 49.
    Ringrose L (2009) Transgenesis in Drosophila melanogaster. Methods Mol Biol 561:3–19CrossRefPubMedGoogle Scholar
  50. 50.
    van Bemmel JG, Filion GJ, Rosado A, Talhout W, de Haas M, van Welsem T, van Leeuwen F, van Steensel B (2013) A network model of the molecular organization of chromatin in Drosophila. Mol Cell 49(4):759–771CrossRefPubMedGoogle Scholar
  51. 51.
    Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153(1):178–192CrossRefPubMedGoogle Scholar
  52. 52.
    Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104(9):3312–3317CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361CrossRefPubMedGoogle Scholar
  54. 54.
    Marshall OJ, Brand AH (2015) damidseq_pipeline: an automated pipeline for processing DamID sequencing datasets. Bioinformatics 31(20):3371–3373CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li R, Hempel LU, Jiang T (2015) A non-parametric peak calling algorithm for DamID-Seq. PLoS One 10(3):e0117415CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gomez-Saldivar G, Meister P, Askjaer P (2016) DamID analysis of nuclear organization in Caenorhabditis elegans. Methods Mol Biol 1411:341–358CrossRefPubMedGoogle Scholar
  57. 57.
    Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7(3):e1001343CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Robson MI, Schirmer EC (2016) The application of DamID to identify peripheral gene sequences in differentiated and primary cells. Methods Mol Biol 1411:359–386CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Cell DivisionInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia

Personalised recommendations