MicroScale Thermophoresis: A Rapid and Precise Method to Quantify Protein–Nucleic Acid Interactions in Solution

Part of the Methods in Molecular Biology book series (MIMB, volume 1654)


Interactions between nucleic acids and proteins are driving gene expression programs and regulating the development of organisms. The binding affinities of transcription factors to their target sites are essential parameters to reveal their binding site occupancy and function in vivo. Microscale Thermophoresis (MST) is a rapid and precise method allowing for quantitative analysis of molecular interactions in solution on a microliter scale. The technique is based on the movement of molecules in temperature gradients, which is referred to as thermophoresis, and depends on molecule size, charge, and hydration shell. Since at least one of these parameters is typically affected upon binding of a ligand, the method can be used to analyze any kind of biomolecular interaction. This section provides a detailed protocol describing the analysis of DNA–protein interactions, using the transcription factor TTF-I as a model protein that recognizes a 10 bp long sequence motif.

Key words

Binding assay Dissociation constant DNA–protein interactions MicroScale thermophoresis Binding affinity 


  1. 1.
    Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43(3 Pt 2):801–810CrossRefPubMedGoogle Scholar
  2. 2.
    Evers R, Grummt I (1995) Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci U S A 92(13):5827–5831CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Langst G, Becker PB, Grummt I (1998) TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J 17(11):3135–3145. doi: 10.1093/emboj/17.11.3135 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Diermeier SD, Nemeth A, Rehli M, Grummt I, Langst G (2013) Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 9(9):e1003786. doi: 10.1371/journal.pgen.1003786 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103(52):19678–19682. doi: 10.1073/pnas.0603873103 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Duhr S, Arduini S, Braun D (2004) Thermophoresis of DNA determined by microfluidic fluorescence. Eur Phys J E Soft Matter 15(3):277–286. doi: 10.1140/epje/i2004-10073-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Eng 49(12):2238–2241CrossRefGoogle Scholar
  8. 8.
    Ludwig C (1856) Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen. Sitzungber Bayer Akad Wiss Wien Math, Naturwiss Kl 20Google Scholar
  9. 9.
    Seidel SA, Wienken CJ, Geissler S, Jerabek-Willemsen M, Duhr S, Reiter A, Trauner D, Braun D, Baaske P (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed Eng 51(42):10656–10659CrossRefGoogle Scholar
  10. 10.
    Schubert T, Pusch MC, Diermeier S, Benes V, Kremmer E, Imhof A, Langst G (2012) Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol Cell 48(3):434–444. doi: 10.1016/j.molcel.2012.08.021 CrossRefPubMedGoogle Scholar
  11. 11.
    Zillner K, Jerabek-Willemsen M, Duhr S, Braun D, Langst G, Baaske P (2012) Microscale thermophoresis as a sensitive method to quantify protein: nucleic acid interactions in solution. Methods Mol Biol 815:241–252CrossRefPubMedGoogle Scholar
  12. 12.
    Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100CrossRefPubMedGoogle Scholar
  13. 13.
    Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Biochemistry IIIUniversity of RegensburgRegensburgGermany
  2. 2.NanoTemper Technologies GmbHMunichGermany
  3. 3.2bind GmbHRegensburgGermany

Personalised recommendations