Advertisement

RNA Detection pp 143-162 | Cite as

Detection and Automated Analysis of Single Transcripts at Subcellular Resolution in Zebrafish Embryos

  • L. Carine Stapel
  • Coleman Broaddus
  • Nadine L. Vastenhouw
Part of the Methods in Molecular Biology book series (MIMB, volume 1649)

Abstract

Single molecule fluorescence in situ hybridization (smFISH) is a method to visualize single mRNA molecules. When combined with cellular and nuclear segmentation, transcripts can be assigned to different cellular compartments resulting in quantitative information on transcript levels at subcellular resolution. The use of smFISH in zebrafish has been limited by the lack of protocols and an automated image analysis pipeline for samples of multicellular organisms. Here we present a protocol for smFISH on zebrafish cryosections. The protocol includes a method to obtain high-quality sections of zebrafish embryos, an smFISH protocol optimized for zebrafish cryosections, and a user-friendly, automated analysis pipeline for cell segmentation and transcript detection. The software is freely available and can be used to analyze sections of any multicellular organism.

Key words

smFISH Zebrafish Cryosections Automated cell segmentation Transcript detection 

Notes

Acknowledgments

This work was supported by MPI-CBG core funding, a Human Frontier Science Program Career Development Award [CDA-00060/2012-C] to NLV; and a Boehringer Ingelheim Fonds PhD fellowship to LCS. We thank Pavel Vopalensky for critically reading the manuscript, Julia Eichhorn for taking photos of the sectioning procedure, and Jan Philipp Junker and Alexander van Oudenaarden for initial advice on smFISH.

References

  1. 1.
    Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. doi: 10.1038/nprot.2007.514 CrossRefPubMedGoogle Scholar
  2. 2.
    Tomancak P, Berman BP, Beaton A et al (2007) Global analysis of patterns of gene expression during drosophila embryogenesis. Genome Biol 8:R145. doi: 10.1186/gb-2007-8-7-r145 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11:637–640. doi: 10.1038/nmeth.2930 CrossRefPubMedGoogle Scholar
  4. 4.
    Junker JP, Noël ES, Guryev V et al (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159:662–675. doi: 10.1016/j.cell.2014.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Satija R, Farrell JA, Gennert D et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. doi: 10.1038/nbt.3192 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Raj A, Peskin CS, Tranchina D et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309. doi: 10.1371/journal.pbio.0040309 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi: 10.1038/nmeth.1253 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lyubimova A, Itzkovitz S, Junker JP et al (2013) Single-molecule mRNA detection and counting in mammalian tissue. Nat Protoc 8:1743–1758. doi: 10.1038/nprot.2013.109 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang F, Flanagan J, Su N et al (2012) Technical advance. J Mol Diagn 14:22–29. doi: 10.1016/j.jmoldx.2011.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Little SC, Tikhonov M, Gregor T (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154:789–800. doi: 10.1016/j.cell.2013.07.025 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boettiger AN, Levine M (2013) Rapid transcription fosters coordinate snail expression in the drosophila embryo. Cell Rep 3:8–15. doi: 10.1016/j.celrep.2012.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bahar Halpern K, Tanami S, Landen S et al (2015) Bursty gene expression in the intact mammalian liver. Mol Cell 58:147–156. doi: 10.1016/j.molcel.2015.01.027 CrossRefPubMedGoogle Scholar
  13. 13.
    Itzkovitz S, Lyubimova A, Blat IC et al (2011) Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat Cell Biol 14:106–114. doi: 10.1038/ncb2384 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oka Y, Sato TN (2015) Whole-mount single molecule FISH method for zebrafish embryo. Sci Rep 5:8571. doi: 10.1038/srep08571 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stapel LC, Lombardot B, Broaddus C et al (2016) Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos. Development 143:540–546. doi: 10.1242/dev.128918 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • L. Carine Stapel
    • 1
  • Coleman Broaddus
    • 2
  • Nadine L. Vastenhouw
    • 1
  1. 1.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  2. 2.Center for Systems Biology DresdenMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations