RNA Detection pp 427-454 | Cite as

Individual Nucleotide Resolution UV Cross-Linking and Immunoprecipitation (iCLIP) to Determine Protein–RNA Interactions

Part of the Methods in Molecular Biology book series (MIMB, volume 1649)

Abstract

RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNA transcripts. In doing so they help direct many essential roles in cellular physiology, while their perturbed activity can contribute to disease etiology. In this chapter we detail a functional genomics approach, termed individual nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP), that can determine the interactions of RBPs with their RNA targets in high throughput and at nucleotide resolution. iCLIP achieves this by exploiting UV-induced covalent cross-links formed between RBPs and their target RNAs to both purify the RBP–RNA complexes under stringent conditions, and to cause reverse transcription stalling that then identifies the direct cross-link sites in the high throughput sequenced cDNA libraries.

Key words

iCLIP CLIP RNA-binding protein RNA Protein–RNA interactions Post-transcriptional regulation 

Notes

Acknowledgments

The iCLIP protocol described is based on previous versions developed in the Ule and Konig labs by many individuals. I would like to extend thanks to all those who have contributed to the method development over the years. I would also like to thank Prof. Jernej Ule for critical reading of the chapter, and Prof. Jernej Ule and Flora Lee for providing the adapter oligo used in this protocol. This work is supported by an Edmond Lily Safra Fellowship to C.R.S.

References

  1. 1.
    Modic M, Ule J, Sibley CR (2013) CLIPing the brain: studies of protein-RNA interactions important for neurodegenerative disorders. Mol Cell Neurosci 56:429–435. doi: 10.1016/j.mcn.2013.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845. doi: 10.1038/nrg3813 CrossRefPubMedGoogle Scholar
  3. 3.
    Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690. doi: 10.1016/j.molcel.2012.05.021 CrossRefPubMedGoogle Scholar
  4. 4.
    Castello A, Horos R, Strein C, Fischer B, Eichelbaum K, Steinmetz LM, Krijgsveld J, Hentze MW (2013) System-wide identification of RNA-binding proteins by interactome capture. Nat Protoc 8(3):491–500. doi: 10.1038/nprot.2013.020 CrossRefPubMedGoogle Scholar
  5. 5.
    Jangi M, Sharp PA (2014) Building robust transcriptomes with master splicing factors. Cell 159(3):487–498. doi: 10.1016/j.cell.2014.09.054 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8(6):479–490. doi: 10.1038/nrm2178 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW (2015) RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 38(4):226–236. doi: 10.1016/j.tins.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cookson MR (2017) RNA-binding proteins implicated in neurodegenerative diseases. Wiley Interdiscip Rev RNA 8(1). doi: 10.1002/wrna.1397
  9. 9.
    Wurth L, Gebauer F (2015) RNA-binding proteins, multifaceted translational regulators in cancer. Biochim Biophys Acta 1849(7):881–886. doi: 10.1016/j.bbagrm.2014.10.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Jayaseelan S, Doyle F, Tenenbaum SA (2014) Profiling post-transcriptionally networked mRNA subsets using RIP-Chip and RIP-Seq. Methods 67(1):13–19. doi: 10.1016/j.ymeth.2013.11.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Greenberg JR (1979) Ultraviolet light-induced crosslinking of mRNA to proteins. Nucleic Acids Res 6(2):715–732CrossRefGoogle Scholar
  12. 12.
    Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386. doi: 10.1016/j.ymeth.2005.07.018 CrossRefPubMedGoogle Scholar
  13. 13.
    Huppertz I, Attig J, D’Ambrogio A, Easton LE, Sibley CR, Sugimoto Y, Tajnik M, Konig J, Ule J (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65(3):274–287. doi: 10.1016/j.ymeth.2013.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gonzalez-Buendia E, Saldana-Meyer R, Meier K, Recillas-Targa F (2015) Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays. Methods Mol Biol 1288:413–428. doi: 10.1007/978-1-4939-2474-5_24 CrossRefPubMedGoogle Scholar
  15. 15.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi: 10.1016/j.cell.2010.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. doi: 10.1038/nature07488 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29(7):607–614. doi: 10.1038/nbt.1873 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16(2):130–137. doi: 10.1038/nsmb.1545 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. doi: 10.1038/nsmb.1838 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Haberman N, Huppertz I, Attig J, Konig J, Wang Z, Hauer C, Hentze MW, Kulozik AE, Le Hir H, Curk T, Sibley CR, Zarnack K, Ule J (2017) Insights into the design and interpretation of iCLIP experiments. Genome Biol 18(1):7. doi: 10.1186/s13059-016-1130-x CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, Rot G, Zupan B, Curk T, Ule J (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol 8(10):e1000530. doi: 10.1371/journal.pbio.1000530 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Van Nostrand EL, Gelboin-Burkhart C, Wang R, Pratt GA, Blue SM, Yeo GW (2016) CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins. Methods. doi: 10.1016/j.ymeth.2016.12.007
  23. 23.
    Bohnsack MT, Tollervey D, Granneman S (2012) Identification of RNA helicase target sites by UV cross-linking and analysis of cDNA. Methods Enzymol 511:275–288. doi: 10.1016/B978-0-12-396546-2.00013-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K, Stanton R, Rigo F, Guttman M, Yeo GW (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13(6):508–514. doi: 10.1038/nmeth.3810 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Flynn RA, Martin L, Spitale RC, Do BT, Sagan SM, Zarnegar B, Qu K, Khavari PA, Quake SR, Sarnow P, Chang HY (2015) Dissecting noncoding and pathogen RNA-protein interactomes. RNA 21(1):135–143. doi: 10.1261/rna.047803.114 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zarnegar BJ, Flynn RA, Shen Y, Do BT, Chang HY, Khavari PA (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat Methods 13(6):489–492. doi: 10.1038/nmeth.3840 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sugimoto Y, Konig J, Hussain S, Zupan B, Curk T, Frye M, Ule J (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13(8):R67. doi: 10.1186/gb-2012-13-8-r67 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, Reyes A, Anders S, Luscombe NM, Ule J (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152(3):453–466. doi: 10.1016/j.cell.2012.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sutandy FX, Hildebrandt A, Konig J (2016) Profiling the binding sites of RNA-binding proteins with nucleotide resolution using iCLIP. Methods Mol Biol 1358:175–195. doi: 10.1007/978-1-4939-3067-8_11 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Division of Brain Sciences, Department of MedicineImperial College LondonLondonUK

Personalised recommendations