RNA Detection pp 305-318 | Cite as

Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe

  • Shin-ichi SatoEmail author
  • Kenji Yatsuzuka
  • Yousuke Katsuda
  • Motonari UesugiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1649)


Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

Key words

Live-cell imaging mRNA RNA aptamer Small molecule Chemical biology 



This work was supported in part by JSPS (26220206 to M.U. and 26440005 to S.S.), ZE Research Program, IAE (ZE27B-18 to S.S.), and an iCeMS research acceleration grant. iCeMS is supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. This work was inspired by the international and interdisciplinary environments of the JSPS Core-to-Core Program, “Asian Chemical Biology Initiative.” We also thank M. Nakashima for manuscript preparation.


  1. 1.
    Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6:331–338CrossRefGoogle Scholar
  2. 2.
    Lampasonaa AA, Czaplinski K (2016) RNA voyeurism: a coming of age story. Methods 98:10–17CrossRefGoogle Scholar
  3. 3.
    Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH (2014) Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–424CrossRefGoogle Scholar
  4. 4.
    Santangelo PJ, Lifland AW, Curt P, Sasaki Y, Bassell GJ, Lindquist ME, Crowe JE Jr (2009) Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 6:347–349CrossRefGoogle Scholar
  5. 5.
    Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V, Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170CrossRefGoogle Scholar
  6. 6.
    Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453:115–119CrossRefGoogle Scholar
  7. 7.
    Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800CrossRefGoogle Scholar
  8. 8.
    Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194CrossRefGoogle Scholar
  9. 9.
    Song W, Strack RL, Jaffrey SR (2013) Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 10:873–875CrossRefGoogle Scholar
  10. 10.
    Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10:1219–1224CrossRefGoogle Scholar
  11. 11.
    Hövelmann F, Gaspar I, Loibl S, Ermilov EA, Roder B, Wengel J, Ephrussi A, Seitz O (2014) Brightness through local constraint—LNA-enhanced FIT hybridization probes for in vivo ribonucleotide particle tracking. Angew Chem Int Ed 53:11370–11375CrossRefGoogle Scholar
  12. 12.
    Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419PubMedGoogle Scholar
  13. 13.
    Wang DO, Matsuno H, Ikeda S, Nakamura A, Yanagisawa H, Hayashi Y, Okamoto A (2012) A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes. RNA 18:166–175CrossRefGoogle Scholar
  14. 14.
    Wang DO, Okamoto A (2015) Visualization of nucleic acids with synthetic excitation-controlled fluorescent oligonucleotide probes. Methods Mol Biol 1262:166–175Google Scholar
  15. 15.
    Oomoto I, Suzuki-Hirano I, Umeshima H, Han YW, Yanagisawa H, Carlton P, Harada Y, Kengaku M, Okamoto A, Shimogori T, Wang DO (2012) ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucl Acids Res 43:e126CrossRefGoogle Scholar
  16. 16.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefGoogle Scholar
  17. 17.
    Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A 100:13308–13313CrossRefGoogle Scholar
  18. 18.
    Sokol DL, Zhang X, Lu P, Gewirtz AM (1998) Real time detection of DNA-RNA hybridization in living cells. Proc Natl Acad Sci U S A 95:11538–11543CrossRefGoogle Scholar
  19. 19.
    Tyagi S, Alsmadi O (2004) Imaging native beta-actin mRNA in motile fibroblasts. Biophys J 87:4153–4162CrossRefGoogle Scholar
  20. 20.
    Murata A, Sato S, Kawazoe Y, Uesugi M (2011) Small-molecule fluorescent probes for specific RNA targets. Chem Commun 47:4712–4714CrossRefGoogle Scholar
  21. 21.
    Sato S, Watanabe M, Katsuda Y, Murata A, Wang DO, Uesugi M (2015) Live-cell imaging of endogenous mRNAs with a small molecule. Angew Chem Int Ed 54:1855–1858CrossRefGoogle Scholar
  22. 22.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  23. 23.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  24. 24.
    Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468CrossRefGoogle Scholar
  25. 25.
    Yoshimura H, Inaguma A, Yamada T, Ozawa T (2012) Fluorescent probes for imaging endogenous β-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7:999–1005CrossRefGoogle Scholar
  26. 26.
    Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448CrossRefGoogle Scholar
  27. 27.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–552CrossRefGoogle Scholar
  28. 28.
    Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247CrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityUji, KyotoJapan
  2. 2.Institute for Chemical ResearchKyoto UniversityUji, KyotoJapan

Personalised recommendations