Skip to main content

Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers

  • Protocol
Book cover RNA Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1649))

Abstract

To elucidate the roles, dynamics, and regulation of RNAs, it is vital to be able to visualize the RNA of interest (ROI) in living cells noninvasively. Here, we describe a novel live-cell RNA imaging method using fluorophore- and quencher-binding aptamers, which can be genetically fused to the ROI. In this method, new membrane permeable and nonfluorescent fluorophore–quencher conjugates were utilized, and we showed that their fluorescence increases dramatically upon binding to fluorophore- or quencher-binding aptamers. This phenomenon allowed for labeling the ROI with many different colored fluorophores and also dual-color imaging of two distinct RNAs in live bacteria. Our approach uses small RNA tags and small molecule fluorophores for labeling, thereby minimal perturbation on the function and dynamics of the RNA of interest is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730. doi:10.1016/j.cell.2009.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broude NE (2011) Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol 80(5):1137–1147. doi:10.1111/j.1365-2958.2011.07652.x

    Article  CAS  PubMed  Google Scholar 

  3. Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466(7302):77–81. doi:10.1038/nature09152

    Article  CAS  PubMed  Google Scholar 

  4. Keiler KC (2011) RNA localization in bacteria. Curr Opin Microbiol 14(2):155–159. doi:10.1016/j.mib.2011.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kannaiah S, Amster-Choder O (2016) Methods for studying RNA localization in bacteria. Methods 98:99–103. doi:10.1016/j.ymeth.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125(48):14716–14717

    Article  CAS  Google Scholar 

  7. Constantin TP, Silva GL, Robertson KL, Hamilton TP, Fague K, Waggoner AS, Armitage BA (2008) Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org Lett 10(8):1561–1564. doi:10.1021/ol702920e

    Article  CAS  PubMed  Google Scholar 

  8. Lee J, Lee KH, Jeon J, Dragulescu-Andrasi A, Xiao F, Rao J (2010) Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging. ACS Chem Biol 5(11):1065–1074

    Article  CAS  Google Scholar 

  9. Holeman LA, Robinson SL, Szostak JW, Wilson C (1998) Isolation and characterization of fluorophore-binding RNA aptamers. Fold Des 3(6):423–431

    Article  CAS  Google Scholar 

  10. Carothers JM, Goler JA, Kapoor Y, Lara L, Keasling JD (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38(8):2736–2747. doi:10.1093/nar/gkq082. gkq082 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  12. Paige JS, KY W, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646. doi:10.1126/science.1207339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10(12):1219–1224. doi:10.1038/nmeth.2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song W, Strack RL, Svensen N, Jaffrey SR (2014) Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc 136(4):1198–1201. doi:10.1021/ja410819x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136(46):16299–16308. doi:10.1021/ja508478x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dolgosheina EV, Jeng SCY, Panchapakesan SSS, Cojocaru R, Chen PSK, Wilson PD, Hawkins N, Wiggins PA, Unrau PJ (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9(10):2412–2420. doi:10.1021/cb500499x

    Article  CAS  PubMed  Google Scholar 

  17. Sunbul M, Jäschke A (2013) Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew Chem Int Ed 52(50):13401–13404. doi:10.1002/anie.201306622

    Article  CAS  Google Scholar 

  18. Sadhu KK, Mizukami S, Watanabe S, Kikuchi K (2010) Turn-on fluorescence switch involving aggregation and elimination processes for beta-lactamase-tag. Chem Commun (Camb) 46(39):7403–7405. doi:10.1039/c0cc02432e

    Article  CAS  Google Scholar 

  19. Sparano BA, Koide K (2005) A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA. J Am Chem Soc 127(43):14954–14955

    Article  CAS  Google Scholar 

  20. Sparano BA, Koide K (2007) Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J Am Chem Soc 129(15):4785–4794

    Article  CAS  Google Scholar 

  21. Murata A, Sato S, Kawazoe Y, Uesugi M (2011) Small-molecule fluorescent probes for specific RNA targets. Chem Commun (Camb) 47(16):4712–4714. doi:10.1039/c1cc10393h

    Article  CAS  Google Scholar 

  22. Arora A, Sunbul M, Jäschke A (2015) Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res 43(21):e144. doi:10.1093/nar/gkv718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sunbul M, Nacheva L, Jäschke A (2015) Proximity-induced covalent labeling of proteins with a reactive fluorophore-binding peptide tag. Bioconjug Chem 26(8):1466–1469. doi:10.1021/acs.bioconjchem.5b00304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Helmholtz Initiative on Synthetic Biology. Murat Sunbul thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. Ankita Arora thanks the DAAD for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Jäschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sunbul, M., Arora, A., Jäschke, A. (2018). Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers. In: Gaspar, I. (eds) RNA Detection. Methods in Molecular Biology, vol 1649. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7213-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7213-5_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7212-8

  • Online ISBN: 978-1-4939-7213-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics