Advertisement

RNA Detection pp 289-304 | Cite as

Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers

  • Murat Sunbul
  • Ankita Arora
  • Andres JäschkeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1649)

Abstract

To elucidate the roles, dynamics, and regulation of RNAs, it is vital to be able to visualize the RNA of interest (ROI) in living cells noninvasively. Here, we describe a novel live-cell RNA imaging method using fluorophore- and quencher-binding aptamers, which can be genetically fused to the ROI. In this method, new membrane permeable and nonfluorescent fluorophore–quencher conjugates were utilized, and we showed that their fluorescence increases dramatically upon binding to fluorophore- or quencher-binding aptamers. This phenomenon allowed for labeling the ROI with many different colored fluorophores and also dual-color imaging of two distinct RNAs in live bacteria. Our approach uses small RNA tags and small molecule fluorophores for labeling, thereby minimal perturbation on the function and dynamics of the RNA of interest is expected.

Key words

Aptamer Fluorophore RNA imaging RNA localization Contact quenching Live cell imaging Fluorescence microscopy RNA trafficking SRB-2 aptamer DNB aptamer 

Notes

Acknowledgments

This work is supported by Helmholtz Initiative on Synthetic Biology. Murat Sunbul thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. Ankita Arora thanks the DAAD for a doctoral fellowship.

References

  1. 1.
    Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730. doi: 10.1016/j.cell.2009.01.044 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Broude NE (2011) Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol 80(5):1137–1147. doi: 10.1111/j.1365-2958.2011.07652.x CrossRefPubMedGoogle Scholar
  3. 3.
    Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466(7302):77–81. doi: 10.1038/nature09152 CrossRefPubMedGoogle Scholar
  4. 4.
    Keiler KC (2011) RNA localization in bacteria. Curr Opin Microbiol 14(2):155–159. doi: 10.1016/j.mib.2011.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kannaiah S, Amster-Choder O (2016) Methods for studying RNA localization in bacteria. Methods 98:99–103. doi: 10.1016/j.ymeth.2015.12.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125(48):14716–14717CrossRefGoogle Scholar
  7. 7.
    Constantin TP, Silva GL, Robertson KL, Hamilton TP, Fague K, Waggoner AS, Armitage BA (2008) Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org Lett 10(8):1561–1564. doi: 10.1021/ol702920e CrossRefPubMedGoogle Scholar
  8. 8.
    Lee J, Lee KH, Jeon J, Dragulescu-Andrasi A, Xiao F, Rao J (2010) Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging. ACS Chem Biol 5(11):1065–1074CrossRefGoogle Scholar
  9. 9.
    Holeman LA, Robinson SL, Szostak JW, Wilson C (1998) Isolation and characterization of fluorophore-binding RNA aptamers. Fold Des 3(6):423–431CrossRefGoogle Scholar
  10. 10.
    Carothers JM, Goler JA, Kapoor Y, Lara L, Keasling JD (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38(8):2736–2747. doi: 10.1093/nar/gkq082. gkq082 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi: 10.1038/346818a0 CrossRefPubMedGoogle Scholar
  12. 12.
    Paige JS, KY W, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646. doi: 10.1126/science.1207339 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10(12):1219–1224. doi: 10.1038/nmeth.2701 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Song W, Strack RL, Svensen N, Jaffrey SR (2014) Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc 136(4):1198–1201. doi: 10.1021/ja410819x CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136(46):16299–16308. doi: 10.1021/ja508478x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dolgosheina EV, Jeng SCY, Panchapakesan SSS, Cojocaru R, Chen PSK, Wilson PD, Hawkins N, Wiggins PA, Unrau PJ (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9(10):2412–2420. doi: 10.1021/cb500499x CrossRefPubMedGoogle Scholar
  17. 17.
    Sunbul M, Jäschke A (2013) Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew Chem Int Ed 52(50):13401–13404. doi: 10.1002/anie.201306622 CrossRefGoogle Scholar
  18. 18.
    Sadhu KK, Mizukami S, Watanabe S, Kikuchi K (2010) Turn-on fluorescence switch involving aggregation and elimination processes for beta-lactamase-tag. Chem Commun (Camb) 46(39):7403–7405. doi: 10.1039/c0cc02432e CrossRefGoogle Scholar
  19. 19.
    Sparano BA, Koide K (2005) A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA. J Am Chem Soc 127(43):14954–14955CrossRefGoogle Scholar
  20. 20.
    Sparano BA, Koide K (2007) Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J Am Chem Soc 129(15):4785–4794CrossRefGoogle Scholar
  21. 21.
    Murata A, Sato S, Kawazoe Y, Uesugi M (2011) Small-molecule fluorescent probes for specific RNA targets. Chem Commun (Camb) 47(16):4712–4714. doi: 10.1039/c1cc10393h CrossRefGoogle Scholar
  22. 22.
    Arora A, Sunbul M, Jäschke A (2015) Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res 43(21):e144. doi: 10.1093/nar/gkv718 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sunbul M, Nacheva L, Jäschke A (2015) Proximity-induced covalent labeling of proteins with a reactive fluorophore-binding peptide tag. Bioconjug Chem 26(8):1466–1469. doi: 10.1021/acs.bioconjchem.5b00304 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations