The Secret Life of RNA: Lessons from Emerging Methodologies

  • Caroline Medioni
  • Florence BesseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1649)


The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.

In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.

Key words

RNA detection Transcriptomics RNA structure RNA localization In vivo RNA imaging Transcription Translation Ribonucleoprotein complexes Interactome 



Work in F.B.’s lab is supported by the ARC (grant #PJA 20141201623), the ANR (through the RNAGRIMP research grant and the ‘Investments for the Future’ LABEX SIGNALIFE program # ANR-11-LABX-0028-01), and the JPND (FlySMALS grant). The authors apologize to colleagues whose relevant studies could not be cited because of space limitations.


  1. 1.
    Hangauer MJ, Carpenter S, McManus MT (2014) Discovering the complexity of the metazoan transcriptome. Genome Biol 15(4):112. doi: 10.1186/gb4172 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Crosetto N, Bienko M, van Oudenaarden A (2015) Spatially resolved transcriptomics and beyond. Nat Rev Genet 16(1):57–66. doi: 10.1038/nrg3832 CrossRefPubMedGoogle Scholar
  3. 3.
    Elkon R, Ugalde AP, Agami R (2013) Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 14(7):496–506. doi: 10.1038/nrg3482 CrossRefPubMedGoogle Scholar
  4. 4.
    Tian B, Manley JL (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 38(6):312–320. doi: 10.1016/j.tibs.2013.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647. doi: 10.1126/science.1155390 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C (2013) Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 27(21):2380–2396. doi: 10.1101/gad.229328.113 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, Hong EJ, Markenscoff-Papadimitriou E, Bear DM, Greenberg ME (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60(6):1022–1038. doi: 10.1016/j.neuron.2008.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gilbert WV, Bell TA, Schaening C (2016) Messenger RNA modifications: form, distribution, and function. Science 352(6292):1408–1412. doi: 10.1126/science.aad8711 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roundtree IA, He C (2016) RNA epigenetics—chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol 30:46–51. doi: 10.1016/j.cbpa.2015.10.024 CrossRefPubMedGoogle Scholar
  10. 10.
    Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Dore LC, Amariglio N, Rechavi G, He C (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530(7591):441–446. doi: 10.1038/nature16998 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12(8):767–772. doi: 10.1038/nmeth.3453 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung JW, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET, Chang HY (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519(7544):486–490. doi: 10.1038/nature14263 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14(1):75–82. doi: 10.1038/nmeth.4057 CrossRefPubMedGoogle Scholar
  14. 14.
    Aw JG, Shen Y, Wilm A, Sun M, Lim XN, Boon KL, Tapsin S, Chan YS, Tan CP, Sim AY, Zhang T, Susanto TT, Fu Z, Nagarajan N, Wan Y (2016) In vivo mapping of eukaryotic RNA Interactomes Reveals Principles of higher-order organization and regulation. Mol Cell 62(4):603–617. doi: 10.1016/j.molcel.2016.04.028 CrossRefPubMedGoogle Scholar
  15. 15.
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA, Robinson JT, Davidovich C, Gooding AR, Goodrich KJ, Mattick JS, Mesirov JP, Cech TR, Chang HY (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165(5):1267–1279. doi: 10.1016/j.cell.2016.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62(4):618–626. doi: 10.1016/j.molcel.2016.04.030 CrossRefPubMedGoogle Scholar
  17. 17.
    Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232. doi: 10.1038/nrg3185 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. doi: 10.1126/science.1168978 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664. doi: 10.1038/nrm4069 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Raj A, Wang SH, Shim H, Harpak A, Li YI, Engelmann B, Stephens M, Gilad Y, Pritchard JK (2016) Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. Elife 5:e13328. doi: 10.7554/eLife.13328 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wethmar K (2014) The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip Rev RNA 5(6):765–778. doi: 10.1002/wrna.1245 CrossRefPubMedGoogle Scholar
  22. 22.
    Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346(6210):1257521. doi: 10.1126/science.1257521 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346(6210):748–751. doi: 10.1126/science.1257522 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4):738–748. doi: 10.1016/j.cell.2008.10.028 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192. doi: 10.1016/j.cell.2016.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu S, Trapnell C (2016) Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res 5. doi: 10.12688/f1000research.7223.1
  27. 27.
    Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568):251–255. doi: 10.1038/nature14966 CrossRefPubMedGoogle Scholar
  28. 28.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. doi: 10.1016/j.cell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172):776–779. doi: 10.1126/science.1247651 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142. doi: 10.1126/science.aaa1934 CrossRefPubMedGoogle Scholar
  31. 31.
    Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18(1):145–153. doi: 10.1038/nn.3881 CrossRefPubMedGoogle Scholar
  32. 32.
    Bendall SC, Davis KL, Amir el AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe'er D (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725. doi: 10.1016/j.cell.2014.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478. doi: 10.1016/j.stem.2010.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, Shi Z, Zhang K, Li C, Cui Y, Lin H, Luo D, Wang J, Lin C, Dai Z, Zhu H, Zhang J, Liu J, Liu H, deVellis J, Horvath S, Sun YE, Li S (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161(5):1175–1186. doi: 10.1016/j.cell.2015.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, Marioni JC (2015) High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 33(5):503–509. doi: 10.1038/nbt.3209 CrossRefPubMedGoogle Scholar
  36. 36.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502. doi: 10.1038/nbt.3192 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Combs PA, Eisen MB (2013) Sequencing mRNA from cryo-sliced Drosophila embryos to determine genome-wide spatial patterns of gene expression. PLoS One 8(8):e71820. doi: 10.1371/journal.pone.0071820 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Junker JP, Noel ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159(3):662–675. doi: 10.1016/j.cell.2014.09.038 CrossRefPubMedGoogle Scholar
  39. 39.
    Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg A, Ponten F, Costea PI, Sahlen P, Mulder J, Bergmann O, Lundeberg J, Frisen J (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294):78–82. doi: 10.1126/science.aaf2403 CrossRefPubMedGoogle Scholar
  40. 40.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401. doi: 10.1126/science.1254257 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wills QF, Mead AJ (2015) Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet 24(R1):R74–R84. doi: 10.1093/hmg/ddv235 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gaspar I, Ephrussi A (2015) Strength in numbers: quantitative single-molecule RNA detection assays. Wiley Interdiscip Rev Dev Biol 4(2):135–150. doi: 10.1002/wdev.170 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pitchiaya S, Heinicke LA, Custer TC, Walter NG (2014) Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 114(6):3224–3265. doi: 10.1021/cr400496q CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280(5363):585–590CrossRefGoogle Scholar
  45. 45.
    Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10):877–879. doi: 10.1038/nmeth.1253 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Choi HM, Beck VA, Pierce NA (2014) Multiplexed in situ hybridization using hybridization chain reaction. Zebrafish 11(5):488–489. doi: 10.1089/zeb.2014.1501 CrossRefPubMedGoogle Scholar
  47. 47.
    Shah S, Lubeck E, Schwarzkopf M, He TF, Greenbaum A, Sohn CH, Lignell A, Choi HM, Gradinaru V, Pierce NA, Cai L (2016) Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143(15):2862–2867. doi: 10.1242/dev.138560 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Player AN, Shen LP, Kenny D, Antao VP, Kolberg JA (2001) Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J Histochem Cytochem 49(5):603–612CrossRefGoogle Scholar
  49. 49.
    Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11):1127–1133. doi: 10.1038/nmeth.2657 CrossRefPubMedGoogle Scholar
  50. 50.
    Pare A, Lemons D, Kosman D, Beaver W, Freund Y, McGinnis W (2009) Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr Biol 19(23):2037–2042. doi: 10.1016/j.cub.2009.10.028 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309. doi: 10.1371/journal.pbio.0040309 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Trcek T, Larson DR, Moldon A, Query CC, Singer RH (2011) Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147(7):1484–1497. doi: 10.1016/j.cell.2011.11.051 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Little SC, Tkacik G, Kneeland TB, Wieschaus EF, Gregor T (2011) The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol 9(3):e1000596. doi: 10.1371/journal.pbio.1000596 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    van Zon JS, Kienle S, Huelsz-Prince G, Barkoulas M, van Oudenaarden A (2015) Cells change their sensitivity to an EGF morphogen gradient to control EGF-induced gene expression. Nat Commun 6:7053. doi: 10.1038/ncomms8053 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vargas DY, Shah K, Batish M, Levandoski M, Sinha S, Marras SA, Schedl P, Tyagi S (2011) Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147(5):1054–1065. doi: 10.1016/j.cell.2011.10.024 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Levesque MJ, Raj A (2013) Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat Methods 10(3):246–248. doi: 10.1038/nmeth.2372 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, Singer RH, Lionnet T, Shav-Tal Y (2015) Cellular levels of signaling factors are sensed by beta-actin alleles to modulate transcriptional pulse intensity. Cell Rep 11(3):419–432. doi: 10.1016/j.celrep.2015.03.039 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Little SC, Tikhonov M, Gregor T (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154(4):789–800. doi: 10.1016/j.cell.2013.07.025 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Larsson C, Grundberg I, Soderberg O, Nilsson M (2010) In situ detection and genotyping of individual mRNA molecules. Nat Methods 7(5):395–397. doi: 10.1038/nmeth.1448 CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang K, Li JB, Gao Y, Egli D, Xie B, Deng J, Li Z, Lee JH, Aach J, Leproust EM, Eggan K, Church GM (2009) Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat Methods 6(8):613–618. doi: 10.1038/nmeth.1357 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nilsson M, Barbany G, Antson DO, Gertow K, Landegren U (2000) Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat Biotechnol 18(7):791–793. doi: 10.1038/77367 CrossRefPubMedGoogle Scholar
  62. 62.
    Grundberg I, Kiflemariam S, Mignardi M, Imgenberg-Kreuz J, Edlund K, Micke P, Sundstrom M, Sjoblom T, Botling J, Nilsson M (2013) In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics. Oncotarget 4(12):2407–2418. doi: 10.18632/oncotarget.1527 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mito M, Kawaguchi T, Hirose T, Nakagawa S (2016) Simultaneous multicolor detection of RNA and proteins using super-resolution microscopy. Methods 98:158–165. doi: 10.1016/j.ymeth.2015.11.007 CrossRefPubMedGoogle Scholar
  64. 64.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233):aaa6090. doi: 10.1126/science.aaa6090 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9(7):743–748. doi: 10.1038/nmeth.2069 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L (2014) Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 11(4):360–361. doi: 10.1038/nmeth.2892 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wahlby C, Nilsson M (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10(9):857–860. doi: 10.1038/nmeth.2563 CrossRefPubMedGoogle Scholar
  68. 68.
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SS, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177):1360–1363. doi: 10.1126/science.1250212 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, Sakr RA, Weigelt B, Hanker AB, Chandarlapaty S, King TA, Reis-Filho JS, Arteaga CL, Park SY, Michor F, Polyak K (2015) In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet 47(10):1212–1219. doi: 10.1038/ng.3391 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Choi HM, Chang JY, Trinh le A, Padilla JE, Fraser SE, Pierce NA (2010) Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28(11):1208–1212. doi: 10.1038/nbt.1692 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K (2016) Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164(4):792–804. doi: 10.1016/j.cell.2016.01.038 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Battich N, Stoeger T, Pelkmans L (2015) Control of transcript variability in single mammalian cells. Cell 163(7):1596–1610. doi: 10.1016/j.cell.2015.11.018 CrossRefPubMedGoogle Scholar
  73. 73.
    Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg A, Itzkovitz S (2015) Bursty gene expression in the intact mammalian liver. Mol Cell 58(1):147–156. doi: 10.1016/j.molcel.2015.01.027 CrossRefPubMedGoogle Scholar
  74. 74.
    Symmons O, Raj A (2016) What’s luck got to do with it: single cells, multiple fates, and biological Nondeterminism. Mol Cell 62(5):788–802. doi: 10.1016/j.molcel.2016.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sanchez A, Golding I (2013) Genetic determinants and cellular constraints in noisy gene expression. Science 342(6163):1188–1193. doi: 10.1126/science.1242975 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 10(2):119–121. doi: 10.1038/nmeth.2305 CrossRefPubMedGoogle Scholar
  77. 77.
    Bahar Halpern K, Caspi I, Lemze D, Levy M, Landen S, Elinav E, Ulitsky I, Itzkovitz S (2015) Nuclear retention of mRNA in mammalian tissues. Cell Rep 13(12):2653–2662. doi: 10.1016/j.celrep.2015.11.036 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB (2015) Combinatorial gene regulation by modulation of relative pulse timing. Nature 527(7576):54–58. doi: 10.1038/nature15710 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife 4. doi: 10.7554/eLife.05003
  80. 80.
    Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131(1):174–187. doi: 10.1016/j.cell.2007.08.003 CrossRefPubMedGoogle Scholar
  81. 81.
    Wilk R, Hu J, Blotsky D, Krause HM (2016) Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes Dev 30(5):594–609. doi: 10.1101/gad.276931.115 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16(2):95–109. doi: 10.1038/nrm3918 CrossRefPubMedGoogle Scholar
  83. 83.
    Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139(18):3263–3276. doi: 10.1242/dev.078626 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mardakheh FK, Paul A, Kumper S, Sadok A, Paterson H, McCarthy A, Yuan Y, Marshall CJ (2015) Global analysis of mRNA, translation, and protein localization: local translation is a key regulator of cell protrusions. Dev Cell 35(3):344–357. doi: 10.1016/j.devcel.2015.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li L, Feng J, Liu H, Tong L, Tang B (2016) Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chem Sci 7:1940–1945CrossRefGoogle Scholar
  86. 86.
    Alonas E, Lifland AW, Gudheti M, Vanover D, Jung J, Zurla C, Kirschman J, Fiore VF, Douglas A, Barker TH, Yi H, Wright ER, Crowe JE Jr, Santangelo PJ (2014) Combining single RNA sensitive probes with subdiffraction-limited and live-cell imaging enables the characterization of virus dynamics in cells. ACS Nano 8(1):302–315. doi: 10.1021/nn405998v CrossRefPubMedGoogle Scholar
  87. 87.
    Jung J, Lifland AW, Zurla C, Alonas EJ, Santangelo PJ (2013) Quantifying RNA-protein interactions in situ using modified-MTRIPs and proximity ligation. Nucleic Acids Res 41(1):e12. doi: 10.1093/nar/gks837 CrossRefPubMedGoogle Scholar
  88. 88.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308. doi: 10.1038/nbt0396-303 CrossRefGoogle Scholar
  89. 89.
    Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B, Freibaum BD, Kanagaraj A, Clare AJ, Badders NM, Bilican B, Chaum E, Chandran S, Shaw CE, Eggan KC, Maniatis T, Taylor JP (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81(3):536–543. doi: 10.1016/j.neuron.2013.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chen AK, Davydenko O, Behlke MA, Tsourkas A (2010) Ratiometric bimolecular beacons for the sensitive detection of RNA in single living cells. Nucleic Acids Res 38(14):e148. doi: 10.1093/nar/gkq436 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hovelmann F, Gaspar I, Ephrussi A, Seitz O (2013) Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc 135(50):19025–19032. doi: 10.1021/ja410674h CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hovelmann F, Gaspar I, Loibl S, Ermilov EA, Roder B, Wengel J, Ephrussi A, Seitz O (2014) Brightness through local constraint--LNA-enhanced FIT hybridization probes for in vivo ribonucleotide particle tracking. Angew Chem 53(42):11370–11375. doi: 10.1002/anie.201406022 CrossRefGoogle Scholar
  93. 93.
    Oomoto I, Suzuki-Hirano A, Umeshima H, Han YW, Yanagisawa H, Carlton P, Harada Y, Kengaku M, Okamoto A, Shimogori T, Wang DO (2015) ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucleic Acids Res 43(19):e126. doi: 10.1093/nar/gkv614 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Paige JS, KY W, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646. doi: 10.1126/science.1207339 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ouellet J (2016) RNA fluorescence with light-up Aptamers. Front Chem 4:29. doi: 10.3389/fchem.2016.00029 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR, Matera AG (2015) Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21(9):1554–1565. doi: 10.1261/rna.052944.115 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Arora A, Sunbul M, Jaschke A (2015) Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res 43(21):e144. doi: 10.1093/nar/gkv718 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Guet D, Burns LT, Maji S, Boulanger J, Hersen P, Wente SR, Salamero J, Dargemont C (2015) Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast. Nat Commun 6:8882. doi: 10.1038/ncomms9882 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Dolgosheina EV, Jeng SC, Panchapakesan SS, Cojocaru R, Chen PS, Wilson PD, Hawkins N, Wiggins PA, Unrau PJ (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9(10):2412–2420. doi: 10.1021/cb500499x CrossRefPubMedGoogle Scholar
  100. 100.
    Zhang J, Fei J, Leslie BJ, Han KY, Kuhlman TE, Ha T (2015) Tandem Spinach Array for mRNA imaging in living bacterial cells. Sci Rep 5:17295. doi: 10.1038/srep17295 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445CrossRefGoogle Scholar
  102. 102.
    Campbell PD, Chao JA, Singer RH, Marlow FL (2015) Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development 142(7):1368–1374. doi: 10.1242/dev.118968 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13(14):1159–1168CrossRefGoogle Scholar
  104. 104.
    Gagnon JA, Kreiling JA, Powrie EA, Wood TR, Mowry KL (2013) Directional transport is mediated by a dynein-dependent step in an RNA localization pathway. PLoS Biol 11(4):e1001551. doi: 10.1371/journal.pbio.1001551 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V, Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170. doi: 10.1038/nmeth.1551 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332(6028):475–478. doi: 10.1126/science.1202142 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Daigle N, Ellenberg J (2007) LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods 4(8):633–636. doi: 10.1038/nmeth1065 CrossRefPubMedGoogle Scholar
  108. 108.
    Yamada T, Yoshimura H, Inaguma A, Ozawa T (2011) Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem 83(14):5708–5714. doi: 10.1021/ac2009405 CrossRefPubMedGoogle Scholar
  109. 109.
    Yoshimura H, Inaguma A, Yamada T, Ozawa T (2012) Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7(6):999–1005. doi: 10.1021/cb200474a CrossRefPubMedGoogle Scholar
  110. 110.
    Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165(2):488–496. doi: 10.1016/j.cell.2016.02.054 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Garcia HG, Tikhonov M, Lin A, Gregor T (2013) Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr Biol 23(21):2140–2145. doi: 10.1016/j.cub.2013.08.054 CrossRefPubMedGoogle Scholar
  112. 112.
    Lucas T, Ferraro T, Roelens B, De Las Heras Chanes J, Walczak AM, Coppey M, Dostatni N (2013) Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr Biol 23(21):2135–2139. doi: 10.1016/j.cub.2013.08.053 CrossRefPubMedGoogle Scholar
  113. 113.
    Lenstra TL, Coulon A, Chow CC, Larson DR (2015) Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol Cell 60(4):597–610. doi: 10.1016/j.molcel.2015.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M (2013) Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4(6):1144–1155. doi: 10.1016/j.celrep.2013.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR (2014) Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3. doi: 10.7554/eLife.03939
  116. 116.
    Grunwald D, Singer RH (2010) In vivo imaging of labelled endogenous beta-actin mRNA during nucleocytoplasmic transport. Nature 467(7315):604–607. doi: 10.1038/nature09438 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y (2010) Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 12(6):543–552. doi: 10.1038/ncb2056 CrossRefPubMedGoogle Scholar
  118. 118.
    Wang C, Han B, Zhou R, Zhuang X (2016) Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165(4):990–1001. doi: 10.1016/j.cell.2016.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wu B, Eliscovich C, Yoon YJ, Singer RH (2016) Translation dynamics of single mRNAs in live cells and neurons. Science 352(6292):1430–1435. doi: 10.1126/science.aaf1084 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Yan X, Hoek TA, Vale RD, Tanenbaum ME (2016) Dynamics of translation of single mRNA molecules in vivo. Cell 165(4):976–989. doi: 10.1016/j.cell.2016.04.034 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP, Zhang Z, Lavis LD, Grimm JB, Viswanathan S, Looger LL, Lionnet T, Stasevich TJ (2016) Real-time quantification of single RNA translation dynamics in living cells. Science 352(6292):1425–1429. doi: 10.1126/science.aaf0899 CrossRefPubMedGoogle Scholar
  122. 122.
    King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97(1):19–33. doi: 10.1042/BC20040067 CrossRefPubMedGoogle Scholar
  123. 123.
    St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6(5):363–375. doi: 10.1038/nrm1643 CrossRefPubMedGoogle Scholar
  124. 124.
    Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH (2014) Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343(6169):422–424. doi: 10.1126/science.1239200 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134(5):843–853. doi: 10.1016/j.cell.2008.06.053 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Bullock SL, Nicol A, Gross SP, Zicha D (2006) Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr Biol 16(14):1447–1452. doi: 10.1016/j.cub.2006.05.055 CrossRefPubMedGoogle Scholar
  127. 127.
    Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14(6):926–939. doi: 10.1016/j.devcel.2008.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Sinsimer KS, Lee JJ, Thiberge SY, Gavis ER (2013) Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep 5(5):1169–1177. doi: 10.1016/j.celrep.2013.10.045 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, Chao JA (2015) Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347(6228):1367–1671. doi: 10.1126/science.aaa3380 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Wu B, Buxbaum AR, Katz ZB, Yoon YJ, Singer RH (2015) Quantifying protein-mRNA interactions in single live cells. Cell 162(1):211–220. doi: 10.1016/j.cell.2015.05.054 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54(4):547–558. doi: 10.1016/j.molcel.2014.04.033 CrossRefPubMedGoogle Scholar
  132. 132.
    McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15(1):203. doi: 10.1186/gb4152 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Courchaine EM, Lu A, Neugebauer KM (2016) Droplet organelles? EMBO J 35(15):1603–1612. doi: 10.15252/embj.201593517 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Konig J, Zarnack K, Luscombe NM, Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13(2):77–83. doi: 10.1038/nrg3141 CrossRefGoogle Scholar
  135. 135.
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. doi: 10.1126/science.1090095 CrossRefPubMedGoogle Scholar
  136. 136.
    Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17(7):909–915. doi: 10.1038/nsmb.1838 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41. doi: 10.3791/2034
  138. 138.
    Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519(7544):491–494. doi: 10.1038/nature14280 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A, Luo W, Rosbash M (2016) TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165(3):742–753. doi: 10.1016/j.cell.2016.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lapointe CP, Wilinski D, Saunders HA, Wickens M (2015) Protein-RNA networks revealed through covalent RNA marks. Nat Methods 12(12):1163–1170. doi: 10.1038/nmeth.3651 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Leppek K, Stoecklin G (2014) An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res 42(2):e13. doi: 10.1093/nar/gkt956 CrossRefPubMedGoogle Scholar
  142. 142.
    Said N, Rieder R, Hurwitz R, Deckert J, Urlaub H, Vogel J (2009) In vivo expression and purification of aptamer-tagged small RNA regulators. Nucleic Acids Res 37(20):e133. doi: 10.1093/nar/gkp719 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161(2):404–416. doi: 10.1016/j.cell.2015.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, Guttman M (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236. doi: 10.1038/nature14443 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B, Colognori D, Lessing D, Payer B, Boukhali M, Haas W, Lee JT (2015) Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349(6245). doi: 10.1126/science.aab2276
  146. 146.
    Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690. doi: 10.1016/j.molcel.2012.05.021 CrossRefPubMedGoogle Scholar
  147. 147.
    Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. doi: 10.1016/j.cell.2012.04.031 CrossRefPubMedGoogle Scholar
  148. 148.
    Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 63(4):696–710. doi: 10.1016/j.molcel.2016.06.029 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127. doi: 10.1038/ncomms10127 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Wessels HH, Imami K, Baltz AG, Kolinski M, Beldovskaya A, Selbach M, Small S, Ohler U, Landthaler M (2016) The mRNA-bound proteome of the early fly embryo. Genome Res 26(7):1000–1009. doi: 10.1101/gr.200386.115 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sysoev VO, Fischer B, Frese CK, Gupta I, Krijgsveld J, Hentze MW, Castello A, Ephrussi A (2016) Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128. doi: 10.1038/ncomms12128 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA (2016) In Planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. Plant Cell 28(10):2435–2452. doi: 10.1105/tpc.16.00562 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11(8):1019–1030. doi: 10.4161/15476286.2014.972208 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Fritzsche R, Karra D, Bennett KL, Ang FY, Heraud-Farlow JE, Tolino M, Doyle M, Bauer KE, Thomas S, Planyavsky M, Arn E, Bakosova A, Jungwirth K, Hormann A, Palfi Z, Sandholzer J, Schwarz M, Macchi P, Colinge J, Superti-Furga G, Kiebler MA (2013) Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep 5(6):1749–1762. doi: 10.1016/j.celrep.2013.11.023 CrossRefPubMedGoogle Scholar
  155. 155.
    Amrute-Nayak M, Bullock SL (2012) Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes. Nat Cell Biol 14(4):416–423. doi: 10.1038/ncb2446 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Batish M, van den Bogaard P, Kramer FR, Tyagi S (2012) Neuronal mRNAs travel singly into dendrites. Proc Natl Acad Sci U S A 109(12):4645–4650. doi: 10.1073/pnas.1111226109 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Buxbaum AR, Wu B, Singer RH (2014) Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343(6169):419–422. doi: 10.1126/science.1242939 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER (2015) Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17(5):558–568. doi: 10.1038/ncb3143 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R (2015) Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat Commun 6:7962. doi: 10.1038/ncomms8962 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Tubing F, Vendra G, Mikl M, Macchi P, Thomas S, Kiebler MA (2010) Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci 30(11):4160–4170. doi: 10.1523/JNEUROSCI.3537-09.2010 CrossRefPubMedGoogle Scholar
  161. 161.
    Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191. doi: 10.1016/j.cell.2012.05.022 CrossRefPubMedGoogle Scholar
  162. 162.
    Hyman AA, Weber CA, Julicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58. doi: 10.1146/annurev-cellbio-100913-013325 CrossRefPubMedGoogle Scholar
  163. 163.
    King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi: 10.1016/j.brainres.2012.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Hubstenberger A, Noble SL, Cameron C, Evans TC (2013) Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 27(2):161–173. doi: 10.1016/j.devcel.2013.09.024 CrossRefPubMedGoogle Scholar
  165. 165.
    Weil TT, Parton RM, Herpers B, Soetaert J, Veenendaal T, Xanthakis D, Dobbie IM, Halstead JM, Hayashi R, Rabouille C, Davis I (2012) Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 14(12):1305–1313. doi: 10.1038/ncb2627 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G (2014) Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Elife 3:e04591. doi: 10.7554/eLife.04591 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R (2016) Distinct stages in stress granule assembly and disassembly. Elife 5:e18413. doi: 10.7554/eLife.18413 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Zurla C, Jung J, Santangelo PJ (2016) Can we observe changes in mRNA “state”? Overview of methods to study mRNA interactions with regulatory proteins relevant in cancer related processes. Analyst 141(2):548–562. doi: 10.1039/c5an01959a CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Ke R, Mignardi M, Hauling T, Nilsson M (2016) Fourth generation of next-generation sequencing technologies: promise and consequences. Hum Mutat 37(12):1363–1367. doi: 10.1002/humu.23051 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):1257998. doi: 10.1126/science.1257998 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414. doi: 10.1038/ncomms3414 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. doi: 10.1126/science.1258096 CrossRefPubMedGoogle Scholar
  173. 173.
    You M, Jaffrey SR (2015) Designing optogenetically controlled RNA for regulating biological systems. Ann N Y Acad Sci 1352:13–19. doi: 10.1111/nyas.12660 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Université Côte d’Azur, CNRS, Inserm, iBVNiceFrance

Personalised recommendations