Polyadenylation Site-Based Analysis of Transcript Expression by 3′READS+

  • Dinghai Zheng
  • Bin TianEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1648)


Deep sequencing of the 3′ end region of poly(A)+ RNA identifies the cleavage and polyadenylation site (PAS) and measures transcript abundance. However, mispriming at internal A-rich regions by the oligo-dT oligo in reverse transcription can lead to falsely identified PASs. This problem can be resolved by direct ligation of an adapter to the 3′ end of RNA. However, ligation-based methods are often inefficient. Here, we describe 3′READS+, an accurate and sensitive method for deep sequencing of the 3′ end of poly(A)+ RNA. Through partial digestion by RNase H of the poly(A) tail bound to a locked nucleic acid (LNA)/DNA hybrid oligo, this method sequences an optimal number of terminal A’s, which balances sequencing quality and accurate identification of PAS in A-rich regions. With efficient ligation steps, 3′READS+ is amenable to small amounts of input RNA. 3′READS+ can also be readily used as a cost-effective method for gene expression analysis.

Key words

Alternative cleavage and polyadenylation Deep sequencing RNA-seq 3′ end sequencing 3′READS+ 


  1. 1.
    Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11(21):2755–2766CrossRefPubMedGoogle Scholar
  2. 2.
    Tian B et al (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33(1):201–212CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tian B, Manley JL (2016) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18(1):18–30CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hrdlickova R, Toloue M, Tian B (2016) RNA-seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1)Google Scholar
  5. 5.
    Velculescu VE et al (1995) Serial analysis of gene expression. Science 270(5235):484–487CrossRefPubMedGoogle Scholar
  6. 6.
    Shepard PJ et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17(4):761–772CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Derti A et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22(6):1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fu Y et al (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21(5):741–747CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jan CH et al (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469(7328):97–101CrossRefPubMedGoogle Scholar
  10. 10.
    Hoque M et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139CrossRefPubMedGoogle Scholar
  11. 11.
    Nam DK et al (2002) Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci U S A 99(9):6152–6156CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee JY, Park JY, Tian B (2008) Identification of mRNA polyadenylation sites in genomes using cDNA sequences, expressed sequence tags, and trace. Methods Mol Biol 419:23–37CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng D, Liu X, Tian B (2016) 3′READS+, a sensitive and accurate method for 3′ end sequencing of polyadenylated RNA. RNA 22(10):1631–1639CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li W et al (2015) Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet 11(4):e1005166CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jayaprakash AD et al (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhuang F et al (2012) Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res 40(7):e54CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Microbiology, Biochemistry and Molecular GeneticsRutgers New Jersey Medical School, Rutgers Cancer Institute of New JerseyNewarkUSA

Personalised recommendations