In Vitro Modulation of Endogenous Alternative Splicing Using Splice-Switching Antisense Oligonucleotides

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1648)

Abstract

Regulation of alternative splicing can be harnessed by antisense-based compounds to control gene expression. Antisense-mediated splicing interference has become a valuable molecular tool to modulate endogenous alternative splicing patterns, to correct cryptic or aberrant splicing, to reduce gene expression by triggering nonsense-mediated mRNA decay, and to activate intronic polyadenylation, both in vitro and in vivo. Here, we describe methods to induce and analyze the modulation of RNA processing, using modified splice-switching antisense oligonucleotides, such as phosphorodiamidate morpholino (PMO).

Key words

mRNA Antisense-oligonucleotide Splicing Polyadenylation Morpholino 

References

  1. 1.
    Spraggon L, Cartegni L (2013) Antisense modulation of RNA processing as a therapeutic approach in cancer therapy. Drug Discov Today Ther Strateg 10(3):e139–e148CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140PubMedPubMedCentralGoogle Scholar
  3. 3.
    Vorlova S et al (2011) Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 43(6):927–939CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Spraggon L, Cartegni L (2013) U1 snRNP-dependent suppression of polyadenylation: physiological role and therapeutic opportunities in cancer. Int J Cell Biol 2013:846510CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298CrossRefPubMedGoogle Scholar
  6. 6.
    Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12(13):1998–2012CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schaal TD, Maniatis T (1999) Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 19(1):261–273CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fairbrother WG et al (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297(5583):1007–1013CrossRefPubMedGoogle Scholar
  9. 9.
    Cartegni L et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–3571CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Nostrand EL, Huelga SC, Yeo GW (2016) Experimental and computational considerations in the study of RNA-binding protein-RNA interactions. Adv Exp Med Biol 907:1–28CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18(11):1241–1250CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aznarez I et al (2008) A systematic analysis of intronic sequences downstream of 5′ splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res 18(8):1247–1258CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Wang Z (2014) Systematical identification of splicing regulatory cis-elements and cognate trans-factors. Methods 65(3):350–358CrossRefPubMedGoogle Scholar
  14. 14.
    Liu HX et al (2000) Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 20(3):1063–1071CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tian H, Kole R (2001) Strong RNA splicing enhancers identified by a modified method of cycled selection interact with SR protein. J Biol Chem 276(36):33833–33839CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119(6):831–845CrossRefPubMedGoogle Scholar
  17. 17.
    Cartegni L et al (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78(1):63–77CrossRefPubMedGoogle Scholar
  18. 18.
    Zammarchi F et al (2011) Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci U S A 108(43):17779–17784CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lefave CV et al (2011) Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30(19):4084–4097CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hua Y et al (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hinrich AJ et al (2016) Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med 8(4):328–345CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10(2):120–125CrossRefPubMedGoogle Scholar
  23. 23.
    Ghigna C et al (2010) Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol 7(4):495–503CrossRefPubMedGoogle Scholar
  24. 24.
    Hoque M, Li W, Tian B (2014) Accurate mapping of cleavage and polyadenylation sites by 3′ region extraction and deep sequencing. Methods Mol Biol 1125:119–129CrossRefPubMedGoogle Scholar
  25. 25.
    Tian B et al (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33(1):201–212CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hoque M et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139CrossRefPubMedGoogle Scholar
  27. 27.
    Popp MW, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Horner RM (2006) Relative RT-PCR: determining the linear range of amplification and optimizing the primers:competimers ratio. CSH Protoc 2006(1)Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of PharmacyRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations