Advertisement

Bioinformatics Resources for Interpreting Proteomics Mass Spectrometry Data

  • Iulia M. LazarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

Developments in mass spectrometry (MS) instrumentation have supported the advance of a variety of proteomic technologies that have enabled scientists to assess differences between healthy and diseased states. In particular, the ability to identify altered biological processes in a cell has led to the identification of novel drug targets, the development of more effective therapeutic drugs, and the growth of new diagnostic approaches and tools for personalized medicine applications. Nevertheless, large-scale proteomic data generated by modern mass spectrometers are extremely complex and necessitate equally complex bioinformatics tools and computational algorithms for their interpretation. A vast number of commercial and public resources have been developed for this purpose, often leaving the researcher perplexed at the overwhelming list of choices that exist. To address this challenge, the aim of this chapter is to provide a roadmap to the basic steps that are involved in mass spectrometry data acquisition and processing, and to describe the most common tools that are available for placing the results in biological context.

Key words

Proteomics Mass spectrometry Bioinformatics Data interpretation 

Notes

Acknowledgment

This work was supported by grant NSF/DBI-1255991 to I.M.L.

References

  1. 1.
    UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212CrossRefGoogle Scholar
  2. 2.
    Apweiler R, Bairoch A, CH W et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32(90001):115D–1119CrossRefGoogle Scholar
  3. 3.
    Alpi E, Griss J, da Silva AW et al (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol 1374:23–54CrossRefGoogle Scholar
  4. 4.
    Boeckmann B, Bairoch A, Apweiler R et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL. Nucleic Acids Res 31(1):365–370PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    CH W, Yeh L-SL, Huang H et al (2003) The protein information resource. Nucleic Acids Res 31(1):345–347CrossRefGoogle Scholar
  6. 6.
    Westbrook J, Feng Z, Jain S et al (2002) The Protein Data Bank: unifying the archive. Nucleic Acids Res 30:245–248PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504PubMedCrossRefGoogle Scholar
  8. 8.
    Suzek BE, Huang H, McGarvey P et al (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23(10):1282–1288PubMedCrossRefGoogle Scholar
  9. 9.
    Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  10. 10.
    Jacob RJ, Baker PR, Huang L et al (2000) Maximinizing proteomic information from MS data: enhancements to protein prospector, a suite of programs for mining genomic databases. Paper presented at the 48th ASMS conference of mass spectrometry and allied topics, Long Beach, 27–31 May 2000Google Scholar
  11. 11.
    Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72(11):2482–2489PubMedCrossRefGoogle Scholar
  12. 12.
    Beavis R, Fenyö D (2004) Finding protein sequences using PROWL. Curr Protoc Bioinform Chapter 13:Unit 13.2Google Scholar
  13. 13.
    Eng J, McCormack AL, Yates JR III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang J, Xin L, Shan B et al (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111 010587PubMedCrossRefGoogle Scholar
  15. 15.
    Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223PubMedCrossRefGoogle Scholar
  17. 17.
    Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467PubMedCrossRefGoogle Scholar
  18. 18.
    Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964PubMedCrossRefGoogle Scholar
  19. 19.
    Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6:654–661PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteoem Res 10:1794–1805CrossRefGoogle Scholar
  21. 21.
    Dorfer V, Pichler P, Stranzl T et al (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13:3679–3684PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392PubMedCrossRefGoogle Scholar
  23. 23.
    Ma K, Vitek O, Nesvizhskii AI (2012) A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet. BMC Bioinformatics 13(Suppl 16):S1CrossRefGoogle Scholar
  24. 24.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658PubMedCrossRefGoogle Scholar
  25. 25.
    The M, Noble WS, MacCoss MJ, Kall L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with Percolator 3.0. J Am Soc Mass Spectrom 27(11):1719–1727PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ma B, Zhang K, Hendrie C et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342PubMedCrossRefGoogle Scholar
  27. 27.
    LeDuc RD, Taylor GK, Kim YB et al (2004) ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res 32:W340–W345PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tanner S, Shu H, Frank A et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77:4626–4639PubMedCrossRefGoogle Scholar
  29. 29.
    Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10:1150–1159PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li X-J, Zhang H, Ranish JR, Aebersold R (2003) Automated statistical analysis of protein abundance ratios from data generated by stable isotope dilution and tandem mass spectrometry. Anal Chem 75:6648–6657PubMedCrossRefGoogle Scholar
  32. 32.
    Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope- coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–951PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pedrioli PGA, Eng JK, Hubley R et al (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22:1459–1466PubMedCrossRefGoogle Scholar
  34. 34.
    Gonzalez-Galarza FF, Lawless C, Hubbard SJ et al (2012) A critical appraisal of techniques, software packages and standards for quantitative proteomic analysis. OMICS 16(9):431–442PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sturm M, Bertsch A, Gropl C et al (2008) OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kohlbacher O, Reinert K, Gröpl C et al (2007) TOPP – the OpenMS proteomics pipeline. Bioinformatics 23(2):e191–e197PubMedCrossRefGoogle Scholar
  37. 37.
    Junker J, Bielow C, Bertsch A et al (2012) TOPPAS: a graphical workflow editor for the analysis of high-throughput proteomics data. J Proteome Res 11(7):3914–3920PubMedCrossRefGoogle Scholar
  38. 38.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372PubMedCrossRefGoogle Scholar
  39. 39.
    Mortensen P, Gouw JW, Olsen JV et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. Proteome Res 9(1):393–403CrossRefGoogle Scholar
  40. 40.
    Lu P, Vogel C, Wang R et al (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotech 25(1):117–124CrossRefGoogle Scholar
  41. 41.
    Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10(6):1265–1269PubMedCrossRefGoogle Scholar
  42. 42.
    Lundgren DH, Martinez H, Wright ME, Han DK (2009) Protein identification using Sorcerer 2 and SEQUEST. Curr Protoc Bioinform Chapter 13:Unit 13.3Google Scholar
  43. 43.
    Vizcaíno JA, Csordas A, del-Toro N et al (2015) 2016 Update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Desiere F, Deutsch EW, King NL (2006) The PeptideAtlas Project. Nucleic Acids Res 34:D655–D658PubMedCrossRefGoogle Scholar
  45. 45.
    Schwämmle V, Sidoli S, Ruminowicz C et al (2016) Systems level analysis of histone H3 post-translational modifications (PTMs) reveals features of PTM crosstalk in chromatin regulation. Mol Cell Proteomics 15:2715–2729PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lam H, Deutsch EW, Eddes JS et al (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7(5):655–657PubMedCrossRefGoogle Scholar
  47. 47.
    Lam H, Deutsch EW, Eddes JS et al (2008) Building consensus spectral libraries for peptide identification in proteomics. Nat Methods 5(10):873–875PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCentralCrossRefGoogle Scholar
  49. 49.
    The Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056CrossRefGoogle Scholar
  50. 50.
    Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566PubMedCrossRefGoogle Scholar
  51. 51.
    Zeeberg BR, Feng W, Wang G et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefGoogle Scholar
  53. 53.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13CrossRefGoogle Scholar
  54. 54.
    Hosack DA, Dennis G Jr, Sherman BT et al (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4(10):R70PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273PubMedCrossRefGoogle Scholar
  56. 56.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shannon P, Markiel A, Ozier O (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedCrossRefGoogle Scholar
  60. 60.
    Carazzolle MF, de Carvalho LM, Slepicka HH et al (2014) IIS-integrated interactome system: a Web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools. PLoS One 9(6):e100385PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Antonov AV, Dietmann S, Rodchenkov I, Mewes HW (2009) PPI spider: a tool for the interpretation of proteomics data in the context of protein protein interaction networks. Proteomics 9(10):2740–2749PubMedCrossRefGoogle Scholar
  62. 62.
    McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interactions prediction database. Nucleic Acids Res 37:D651–D656PubMedCrossRefGoogle Scholar
  63. 63.
    Scott MS, Barton GJ (2007) Probabilistic prediction and ranking of human protein protein interactions. BMC Bioinformatics 8:239–260PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Stark C, Breitkreutz BJ, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539PubMedCrossRefGoogle Scholar
  65. 65.
    Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the general repository for interaction datasets. Genome Biol 4(3):R23PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Prasad TSK, Goel R, Kandasamy K et al (2009) Human protein reference database – 2009 update. Nucleic Acids Res 37:D767–D772CrossRefGoogle Scholar
  67. 67.
    Hermjakob H, Montecchi-Palazzi L, Lewington C et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acid Res 42:D358–D363PubMedCrossRefGoogle Scholar
  69. 69.
    Licata L, Briganti L, Peluso D et al (2012) Nucleic Acids Res 40:D857–D861PubMedCrossRefGoogle Scholar
  70. 70.
    Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21(6):832–834PubMedCrossRefGoogle Scholar
  71. 71.
    Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28(1):289–291PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107PubMedCrossRefGoogle Scholar
  73. 73.
    Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041PubMedCrossRefGoogle Scholar
  74. 74.
    Croft D, Mundo AF, Haw R et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477PubMedCrossRefGoogle Scholar
  75. 75.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449PubMedCrossRefGoogle Scholar
  76. 76.
    Mostafavi S, Ray D, Warde-Farley D et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pratt D, Chen J, Welker D et al (2015) NDEx, the network data exchange. Cell Systems 1(4):302–305PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kutmon M, Riutta A, Nunes N et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44:D488–D494PubMedCrossRefGoogle Scholar
  80. 80.
    Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307PubMedCrossRefGoogle Scholar
  81. 81.
    Kutmon M, van Iersel MP, Bohler A et al (2015) PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol 11(2):e1004085PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Cerami EG, Gross BE, Demir E et al (2011) Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685–D690PubMedCrossRefGoogle Scholar
  83. 83.
    Horn H, Schoof EM, Kim J et al (2014) KinomeXplorer: an integrated platform for kinome biology studies. Nat Methods 11(6):603–604PubMedCrossRefGoogle Scholar
  84. 84.
    Artimo P, Jonnalagedda M, Arnold K et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1):W597–W603PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Finn RD, Attwood TK, Babbitt PC et al (2017) InterPro in 2017 – beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199PubMedCrossRefGoogle Scholar
  86. 86.
    Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285PubMedCrossRefGoogle Scholar
  87. 87.
    Sigrist CJA, Cerutti L, Hulo N et al (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3:265–274PubMedCrossRefGoogle Scholar
  88. 88.
    Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ruepp A, Waegele B, Lechner M et al (2010) CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res 38:D497–D501PubMedCrossRefGoogle Scholar
  90. 90.
    Hornbeck PV, Zhang B, Murray B et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520PubMedCrossRefGoogle Scholar
  91. 91.
    Gnad F, Ren S, Cox J et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res 39:D261–D267PubMedCrossRefGoogle Scholar
  93. 93.
    Huang HD, Lee TY, Tseng SW, Horng JT (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33:W226–W229PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Amanchy R, Periaswamy B, Mathivanan S et al (2007) A curated compendium of phosphorylation motifs. Nat Biotechnol 25(3):285–286PubMedCrossRefGoogle Scholar
  95. 95.
    Cooper CA, Gasteiger E, Packer N (2001) GlycoMod – a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–349PubMedCrossRefGoogle Scholar
  96. 96.
    Cooper CA, Gasteiger E, Packer N (2003) Predicting glycan composition from experimental mass using GlycoMod. In: Conn PM (ed) Handbook of proteomic methods. Humana, Totowa, NJ, pp 225–232Google Scholar
  97. 97.
    Hayes CA, Karlsson NG, Struwe WB et al (2011) UniCarb-DB: a database resource for glycomic discovery. Bioinformatics 27(9):1343–1344PubMedCrossRefGoogle Scholar
  98. 98.
    Campbell MP, Nguyen-Khuong T, Hayes CA et al (2014) Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. Biochim Biophys Acta 1844(1 Pt A):108–116PubMedCrossRefGoogle Scholar
  99. 99.
    Cooper CA, Harrison MJ, Wilkins MR, Packer NH (2001) GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Res 29(1):332–335PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhang H, Loriaux P, Eng J et al (2006) UniPep, a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol 7:R73PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Han X, He L, Xin L et al (2011) PEAKS PTM: mass spectrometry based identification of peptides with unspecified modifications. J Proteome Res 10(7):2930–2936PubMedCrossRefGoogle Scholar
  102. 102.
    Goecks J, Nekrutenko A, Taylor J, Team G (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Blankenberg D, Kuster GV, Coraor N et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Ch 19:Unit 19.10.1–Unit 19.1021Google Scholar
  104. 104.
    Taylor J, Schenck I, Blankenberg D, Nekrutenko A (2007) Using galaxy to perform large-scale interactive data analyses. In: Baxevanis AD (ed) Current protocols in bioinformatics, pp 1–77, Unit 10-5, Wiley Online LibraryGoogle Scholar
  105. 105.
    Wolstencroft K, Haines R, Fellows D et al (2013) The Taverna workflow suite: designing and executing workflows of Web services on the desktop, web or in the cloud. Nucleic Acids Res 41(W1):W557–W561PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tiwari A, Sekhar AK (2007) Workflow based framework for life science informatics. Comput Biol Chem 31(5–6):305–319PubMedCrossRefGoogle Scholar
  107. 107.
    Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Tenga MJ, Lazar IM (2014) Proteomic study reveals a functional network of cancer markers in the G1-stage of the breast cancer cell cycle. BMC Cancer 14:710PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat Protoc 11(5):993–1006PubMedCrossRefGoogle Scholar
  110. 110.
    Lazar IM (2009) Recent advances in capillary and microfluidic platforms with MS detection for the analysis of phosphoproteins. Electrophoresis 30(1):262–275PubMedCrossRefGoogle Scholar
  111. 111.
    Lazar IM, Deng J, Ikenishi F, Lazar AC (2015) Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 36(1):225–237PubMedCrossRefGoogle Scholar
  112. 112.
    Deracinois B, Flahaut C, Duban-Deweer S, Karamanos Y (2013) Comparative and quantitative global proteomics approaches: an overview. Proteomes 1:180–218PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kuzyk MA, Parker CE, Domanski D, Borchers CH (2013) Development of MRM-based assays for the absolute quantitation of plasma proteins. Methods Mol Biol 1023:53–82PubMedCrossRefGoogle Scholar
  114. 114.
    Zubarev RA, Makarov A (2013) Orbitrap mass spectrometry. Anal Chem 85:5288–5296PubMedCrossRefGoogle Scholar
  115. 115.
    Wells MJ, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185PubMedCrossRefGoogle Scholar
  116. 116.
    Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712PubMedCrossRefGoogle Scholar
  118. 118.
    Pinho AJ, Pratas D (2014) MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics 30(1):117–118PubMedCrossRefGoogle Scholar
  119. 119.
    Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based, proteomics. Methods Mol Biol 604:55–71PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cappadona S, Baker PR, Cutillas PR et al (2012) Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 43(3):1087–1108PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chen Y, Wang F, Xu F, Yang T (2016) Mass spectrometry-based protein quantitation (Chapter 15). In: Mirzaei H, Carrasco M (eds) Modern proteomics-sample preparation analysis and practical application. Springer, New York, NY, pp 255–279CrossRefGoogle Scholar
  122. 122.
    Li Z, Adams RM, Chourey K (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11(3):1582–1590PubMedCrossRefGoogle Scholar
  123. 123.
    Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedCrossRefGoogle Scholar
  124. 124.
    Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272PubMedCrossRefGoogle Scholar
  126. 126.
    Choi H, Fermin D, Nesvizhskii AI (2008) Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics 7(12):2373–2385PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Carvalho PC, Lima DB, Leprevost FV et al (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11(1):102–117PubMedCrossRefGoogle Scholar
  128. 128.
    Kolmogorov M, Liu X, Pevzner PA (2016) SpectroGene: a tool for proteogenomic annotations using top-down spectra. J Proteome Res 15:144–151PubMedCrossRefGoogle Scholar
  129. 129.
    Paik Y-K, Omenn GS, Uhlen M et al (2012) Standard guidelines for the chromosome-centric human proteome project. J Proteome Res 11(4):2005–2013PubMedCrossRefGoogle Scholar
  130. 130.
    Taylor CF, Paton NW, Lilley KS et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893PubMedCrossRefGoogle Scholar
  131. 131.
    Lavallée-Adam M, Rauniyar N, McClatchy DB, Yates JR 3rd (2014) PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data. J Proteome Res 13(12):5496–5509PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Carnielli CM, Winck FV, Paes Leme AF (2015) Functional annotation and biological interpretation of proteomics data. Biochim Biophys Acta 1854(1):46–54PubMedCrossRefGoogle Scholar
  133. 133.
    Yang X, Lazar IM (2014) XMAn: a Homo sapiens mutated-peptide database for MS analysis of cancerous cell states. J Proteome Res 13(12):5486–5495PubMedCrossRefGoogle Scholar
  134. 134.
    Gehlenborg N, O’Donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nat Methods 7(3s):S56–S68PubMedCrossRefGoogle Scholar
  135. 135.
    Cho CR, Labow M, Reinhardt M et al (2006) The application of systems biology to drug discovery. Curr Opin Chem Biol 10:294–302PubMedCrossRefGoogle Scholar
  136. 136.
    Yin N, Ma W, Pei J et al (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS One 9(4):e93960PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations